Article Abstract

Machine-learning based classification of glioblastoma using delta-radiomic features derived from dynamic susceptibility contrast enhanced magnetic resonance images

Authors: Jiwoong Jeong, Liya Wang, Bing Ji, Yang Lei, Arif Ali, Tian Liu, Walter J. Curran, Hui Mao, Xiaofeng Yang

Abstract

Background: Glioblastoma is the most aggressive brain tumor with poor prognosis. The purpose of this study is to improve the tissue characterization of these highly heterogeneous tumors using delta-radiomic features of images from dynamic susceptibility contrast enhanced (DSC) magnetic resonance imaging (MRI).
Methods: Twenty-five patients with histopathologically confirmed to be 13 high-grade (HG) and 12 low-grade (LG) gliomas who underwent the standard brain tumor MRI protocol, including DSC MRI, were included. Tumor regions on all DSC MRI images were registered to and contoured in T2-weighted fluid-attenuated inversion recovery (FLAIR) images. These contours and its contralateral regions of the normal tissue were used to extract delta-radiomic features before applying feature selection. The most informative and non-redundant features were selected to train a random forest to differentiate HG and LG gliomas. Then a leave-one-out cross-validation random forest was applied to classify these tumors for grading. Finally, a majority-voting method was applied to reduce binarization bias and to combine the results of various feature lists.
Results: Analysis of the predictions showed that the reported method consistently predicted the tumor grade of 24 out of 25 patients correctly (0.96). Finally, the mean prediction accuracy was 0.950±0.091 for HG and 0.850±0.255 for LG. The area under the receiver operating characteristic curve (AUC) was 0.94.
Conclusions: This study shows that delta-radiomic features derived from DSC MRI data can be used to characterize and determine the tumor grades. The radiomic features from DSC MRI may be used to elucidate the underlying tumor biology and response to therapy.