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Introduction

The risk of reperfusion injury should be considered in the 
interventional management of cerebrovascular stenosis or 
occlusion. Although reperfusion can salvage brain tissue 
from ischemic necrosis, it can also lead to reperfusion injury, 
such as irreversible severe cerebral edema or hemorrhagic 
transformation (1).

The lenticulostriate arteries (LSAs), which stem from 
the middle cerebral artery (MCA), are the main perforators 
supplying the internal capsule, the basal ganglia, and a part 
of the corona radiata of the brain. Because LSAs are terminal 
vessels and lack collateral connections (2), the lenticulostriate 
territory is a common site of cerebral infarction (3) and 
hemorrhagic transformation (4). Revascularization of a 
stenotic or occlusive proximal artery is well known to carry a 
high risk of bleeding in the lenticulostriate infarct region.

This study describes the case of a patient with an acute 
infarction of the left corona radiata with MCA horizontal 
(M1) segment occlusion who experienced hemorrhage 
in the ipsilateral frontal lobe following intravascular 
recanalization. This study offers a new perspective on 
understanding the effect of chronic ischemia on reperfusion 
injury leading to hemorrhagic transformation.

Case presentation

A 61-year-old male with a history of myocardial infarction 
and poorly controlled arterial hypertension suffered a 
transient attack on the left side of his body on the day 
before his presentation at the clinic. During the attack, 
the patient felt dizziness and weakness in his left arm and 
leg after approximately 10 minutes of walking in a park. 
He visited the emergency department the next evening, 
having experienced left facial drop and speech difficulties 
for 4 hours. A physical examination showed a National 
Institute of Health Stroke Scale (NIHSS) score of 2. MRI 
with diffusion-weighted imaging demonstrated acute and 
multiple focal infarcts in the right corona radiata (Figure 
1A). MR angiography revealed an occlusion of the MCA 
M1 segment, with a residual stump at its origin (Figure 1B). 

The patient was given conventional medical treatment, 
including dual antiplatelet (aspirin 100 mg/day and 
clopidogrel 75 mg/day, both with a loading dose of 300 mg)  
and atorvastatin therapy. Three days later, the patient 
developed hemiparesis of the left limb with grade 2 
muscle strength and a positive Babinski sign; the NIHSS 
score increased to 8. Emergency MRI scans of the brain 
illuminated more infarcts in the same corona radiata region 
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(Figure 1C). The patient was subsequently diagnosed with 
progressive ischemic stroke with MCA occlusion. 

After signing informed consent, the patient successfully 
underwent emergent endovascular therapy. Cerebral 
angiography was performed via a femoral approach. 
After successful femoral sheath implantation, a bolus 
of unfractionated heparin was injected intravenously at 
3,000 unit and then at 1,000 unit every hour. After general 
anesthesia administration and heparinization, angiography 
revealed proximal occlusion of the MCA M1 segment and 
robust leptomeningeal branch anastomosis of the ipsilateral 
anterior cerebral artery (ACA) in the right temporal lobe 
(Figure 1D). Compensatory collateral flow from the ACA 

did not reversely fill the distal M1 segment and LSAs. The 
images of the basal ganglia and temporal lobe were slightly 
delayed compared to those of the ipsilateral frontal lobe 
and the frontotemporal watershed region (Figure 1E). The 
occluded M1 segment was then recanalized with the use 
of a 2.0×9.0 mm Gateway balloon (Boston Scientific, San 
Leandro, CA, USA). Under roadmap guidance, an over-the-
wire balloon was advanced through the lesion with a 0.014 
microwire (200 cm). Balloon angioplasty was performed 
with the nominal diameter set at 6 atmospheres for  
30 seconds. After angioplasty of the stenosis was performed 
with the Gateway balloon, anterograde blood flow in the 
MCA and imaging of the LSAs (Figure 1F) were restored 

Figure 1 Radiographic findings of bleeding in the non-infarct region after recanalization. (A) Brain MRI scan showing focal infarcts in the 
right corona radiata. (B) MR angiography image showing occlusion of the M1 segment of the middle cerebral artery (MCA), with a residual 
stump (white arrow) at its origin. (C) A second MRI scan from 3 days later showing more infarcts in the same corona radiata region. (D) 
Digital subtraction angiography (DSA) image depicting the occluded MCA at the M1 segment and the robust leptomeningeal arteries 
connecting the anterior cerebral artery (ACA). (E) A DSA image showing the compensatory collateral flow from the ACA not reversely 
filling the distal M1 segment of the MCA and the lateral LSAs. The frontal lobe and the frontotemporal watershed region appeared to be 
in the venous phase, while the basal ganglia and temporal lobe stayed in the arterial phase. (F) Anterograde blood flow in the MCA and 
imaging of the LSAs were restored immediately after balloon angioplasty (Gateway, 2.0×9.0 mm) to recanalize the blocked M1 segment. 
(G) CT scan showing no hemorrhage or hyperdensity in the infarcted area (white arrows) 3 hours after treatment intervention. (H) CT scan 
showing a parenchymal hematoma of approximately 26 mL in the right frontal lobe and mild hyperdensity in the temporo-occipital cortex 
(white arrows) 3 h after the operation.
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immediately.  
Three hours after the operation, the patient underwent 

CT scans after experiencing symptoms of stupor and 
somnolence. No hemorrhage or hyperdensity was observed 
in the infarcted area of the corona radiata (Figure 1G). 
There was, however, a hematoma of approximately  
26 mL in volume in the right frontal lobe parenchyma, 
with mild hyperdensity observed in the right temporo-
parieto-occipital junction of the cerebral cortex (Figure 
1H) .  Protamine was not administered for heparin 
neutralization, because the heparin used during the 
procedure would have already been naturally metabolized. 
Due to the low-risk signals on subsequent CT scans, 
such as the location and volume of the hematoma and 
no change of blood volume, hematoma evacuation and 
platelet transfusion therapy were not considered. After 2 
weeks of nonsurgical treatment without antiplatelet drugs, 
the hematoma was absorbed, and the muscle strength of 
the left limb improved to grade 3.

This research is a retrospective and observational 
case study. All procedures in this study involving human 
participants were performed in accordance with the ethical 
standards of the institutional and/or national research 
committee(s), and adhered to the Helsinki Declaration (as 
revised in 2013). Written informed consent was obtained 
from the patient for the publication of this study and the 
accompanying images. A copy of the written consent is 
available for review by the editorial office of this journal.

Discussion

Vascular structure and autoregulation

A cortical leptomeningeal network is composed of pial 
arteries and arterioles at neocortical surface (5). With the 
help of this network, the ACA and the MCA bring extensive 
collateral blood flow to their watershed regions. When a 
pressure gradient occurs in the network due to stenosis or 
arterial occlusion, these preexisting arterial collaterals are 
circuited, and then gradually grow over time (6). Even a 
tiny arteriole can develop into a larger artery and play a 
significant compensatory role (7). Parenchymal arterioles 
originate from the arterial network on the surface of the 
brain parenchyma and plunge perpendicularly into the 
cortex (5). The vast majority of parenchymal arterioles 
do not bifurcate on the pial surface before plunging into 
the parenchyma (8). The walls of arteries and arterioles 
comprise three typical coaxial coats: the tunica intima, 

tunica media, and tunica adventitia. The tunica adventitia 
consists of fibroblasts, collagen fibers, and nerve bundles 
(2,9). Extracranial, large intracranial, and pial arteries on 
the brain surface are richly innervated by sympathetic and 
parasympathetic nerve fibers (10,11) that travel along the 
tunica adventitia and control vasoconstriction (12).  

Cerebral autoregulators include intraluminal pressure, 
peripheral ions and molecules, and neurotransmitter 
signals from sympathetic and parasympathetic nerve 
fibers. Pressure on the vessel walls can immediately affect 
muscle tone (13), and regulate the structural and functional 
reorganization of endothelial and smooth muscle cells  
(14-16). When blood pressure exceeds the limit of myogenic 
autoregulation, the remaining autoregulation of small 
arteries and large arterioles depends on the sympathetic 
autonomic innervation of the tunica adventitia (17). When 
perivascular sympathetic nerve fibers are denervated, 
cerebral autoregulation and collateral arteriogenesis 
become reduced in patients with chronic cerebral 
hypoperfusion (18). Due to being completely enveloped by 
astrocytic end-feet (19) and lack of tunica adventitia (2,20), 
parenchymal arterioles are mostly deprived of sympathetic 
autoregulation, and less subject to chronic hypoperfusion.

Reperfusion lesions

Ischemia–reperfusion injury can further damage brain 
vasculature and parenchyma. Due to the lack of vascular 
smooth muscle in capillaries, the regulation of capillary 
flow primarily depends on arteriolar and arterial vascular 
smooth muscle (21). As autoregulation is impaired by 
chronic ischemia, these resistant arterioles and arteries 
expand to their maximum extent under hypoperfusion, and 
constrict less in the condition of suddenly restored normal 
intraluminal pressure. Consequently, the capillaries are 
exposed directly to unbuffered arterial blood pressure (21).  
As the venous endothelium is part of the blood–brain 
barrier, the venous component of the blood–brain barrier 
appears to be the most common site of rupture (22,23) in 
response to violent conditions, including hypertension (24).  

Vasogenic damage leads to “fenestration” in capillary (1).  
When a certain degree of vasogenic damage occurs, 
protein components leak from the capillary lumen into 
the extravascular space, thereby increasing the density 
of the ischemic region on CT scans (25). Contrast 
agents may also leak from the lumen into the infarct 
region when reperfusion occurs. After endovascular 
treatment, approximately 39% to 57% of patients show 
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hyperdensity on CT scans, which represents contrast agent 
leakage (26,27). The non-ionic contrast agents widely 
used in neuroangiography have molecular weights of 
approximately 600 to 1,500 Daltons (Da) (28). Both the 
molecular weight and radius of these agents are between 
that of macromolecular substances (e.g., albumin, and 
hemoglobin) and ionic or micromolecules (e.g., Na+, K+, 
and H2O). In mild capillary injury, which impacts capillary 
permeability, contrast agents may leak from the lumen, 
whereas macromolecular albumin (approximately 6,900 Da)  
does not. In moderate capillary damage, both contrast and 
albumin may leak out, but hemoglobin (approximately 
65,000 Da) does not. In severe lesions, the integrity of 
the endothelial cells in capillary vessels is destroyed, and 
all components, including hemoglobin, albumin, and 
contrast agents, can be extravasated, in what is known as 
hemorrhagic transformation (1). 

In this study, postoperative CT scans showed a 
hematoma in the right frontal lobe and mild hyperdensity 
in the cortex of the right temporo-occipital watershed 
area; however, these two areas did not show infarction 
on MRI scans, nor were there any corresponding clinical 
symptoms. These findings suggest that vasogenic lesions 
may result from arterial autoregulation impairment without 
parenchymal ischemic injury. In the frontotemporal lobe, 
the robust leptomeningeal arteries played an active role 
in improving blood supply to the MCA territory prior to 
endovascular therapy. After recanalization, these collateral 
arteries with impaired autoregulation dilated significantly, 
allowing blood to flood the capillaries. Eventually, the 
integrity of the capillaries was destroyed by excessive 
blood flow, and hemorrhagic transformation occurred in 
the right frontal lobe without ischemia. Due to arterial 
autoregulation impairment, vascular lesions occurred in 
the temporo-occipital cortex, but to a lesser degree than 
in the frontotemporal lobe. Consequently, the capillaries 
transformed into “fenestrated” capillaries, thus allowing the 
non-ionic contrast agents to leak from the lumen. Contrast 
agent leakage caused a slight hyperdensity on CT scans. 

Impact of reperfusion on LSAs

The LSAs mostly originate from the M1 segment of the 
MCA trunk at an almost right angle. The LSAs have 
an average diameter of 480 μm (with a range of 100 to  
1,280 μm) and travel an average of 1.50 to 4.35 mm into the 
subarachnoid space (the extracerebral LSA segment) before 
penetrating into the parenchyma (the intracerebral LSA 

segment) (29). The caliber of the LSAs in the intracerebral 
segments is mostly <350 μm at the origin, and about 30 
μm at the terminal (2). The LSAs are usually divided into 
medial and lateral arteries, the latter of which typically have 
bigger calibers and longer extracerebral segments than the 
former (2,30). Compared with the pial arterial network on 
the neocortical surface, LSAs have shorter extracerebral 
segments and lack an arterial network. This implies that 
sympathetic autoregulation exerts less of an impact on 
LSAs than on pial arteries and arterioles due to the limited 
length of the tunica adventitia containing nerve bundles. 
Therefore, in chronic hypoperfusion caused by proximal 
arterial stenosis or occlusion, the cumulative dilatation 
effect on the LSAs is less than that on pial arteries and 
arterioles. When the stenosis or occlusion is relieved and 
perfusion resumes, the LSAs are less over-dilated relative to 
pial arteries and arterioles, resulting in a lesser increase in 
capillary flow.  

In this study, progressive cerebral infarction occurred 
in the right corona radiata supplied by the lateral LSAs. 
However, after intravascular recanalization, hemorrhagic 
transformation occurred in the ipsilateral frontal lobe, 
which was sufficiently supplied by the ACA. Further, the 
infarct region did not show contrast agent leakage, which 
is indicative of reperfusion injury. This phenomenon may 
be explained as follows. As an extracerebral segment, the 
pial arteries are richly innervated by sympathetic and 
parasympathetic nerve fibers (10,11) which influence 
autoregulation and collateral arteriogenesis in chronic 
cerebral hypoperfusion (18). Due to the extremely short 
extracerebral segment of LSAs (29), chronic cerebral 
hypoperfusion caused by stenosis or occlusion exerts 
little influence on the autoregulation capability of these 
arteries, and the cumulative effect of reperfusion on arterial 
dilatation is limited. In this case, therefore, there was no 
significant increase in luminal blood flow to the LSAs after 
angioplasty, and no hemorrhagic transformation occurred 
in the area of the previous infarct in the corona radiata.

Conclusions

The effect of chronic cerebral ischemia in the context of 
reperfusion injury may be more obvious in the neocortical 
area than in the LSA territory.
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