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Introduction

Each year about 15 million people suffer from stroke 

worldwide according to the World Health Organization 

(WHO) (1). Among this, approximately 5 million die while 

another 5 million are permanently disabled. According to 

the American Stroke Association, the most common type 
of stroke is ischemic stroke caused by an occlusion of a 
blood vessel supplying the brain, accounting for 87% of all 
strokes (2,3). Without timely reperfusion, ischemia will lead 
to cerebral infarction due to a prolonged impairment of 
oxygen and nutrient supply. 
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Early intervention and reperfusion have been the 
mainstay of acute stroke treatment (4). Although there have 
been many attempts to develop neuroprotection therapies, 
none have been successfully translated into routine clinical 
practice (5). The failures are multifactorial, for example, the 
inability to properly account for patient heterogeneity and a 
lack of reliable and clinically proven surrogate outcomes (6). 
In order to better stratify acute ischemic stroke patients for 
treatment decisions, imaging biomarkers are increasingly 
being used to better understand the pathophysiology of 
acute ischemic stroke (7).

The main aim of recanalization therapy is to recover 
tissue that may be salvaged through timely reperfusion 
and minimize the final area of infarction. This viable tissue 
is referred to as the ischemic penumbra (8). The current 
method of estimating the penumbra includes determining 
the spatial mismatch between the infarct core estimate and 
hypoperfused area. The most widely used imaging modality 
to perform this quantification is through computed 
tomography (CT) and CT perfusion (CTP) imaging due 
to its speed and wide availability (9,10). Alternatively, the 
penumbra has also been estimated using magnetic resonance 
imaging (MRI), via the mismatch between diffusion-
weighted imaging (DWI) and perfusion-weighted imaging 
(PWI) (11). 

However, the infarct core and hypoperfused area 
mismatch can often lead to inaccuracies in the extent 
of the ischemic penumbra, falsely including the benign 
oligemia (12) or overestimating the ischemic core (so-called 
“ghost core”) (13,14). According to the pathophysiological 
evolution of ischemic stroke, tissue acidification happens 
prior to cerebral infarction (15). Thus, it is often 
hypothesized that a pH-sensitive imaging technique may be 
able to act as a more accurate biomarker for identifying the 
penumbra. 

Chemical exchange saturation transfer (CEST) MRI is a 
novel pH-weighted imaging technique first demonstrated by 
Balaban et al. in 2000 that enables the indirect detection of 
low concentration endogenous molecules in a non-invasive 
manner via chemical exchange with water protons (16,17). 
To date, the most studied form of CEST MRI involves the 
detection of exchangeable amide protons in the backbone of 
mobile proteins and/or peptides, aptly called amide proton 
transfer (APT) MRI (18-21). Due to the pH-weighting of 
CEST and thus APT MRI, this imaging technique has the 
potential to complement the existing imaging modalities in 
ischemic stroke imaging, particularly, in the definition and 
investigation of the penumbra. 

The first study demonstrating the use of APT MRI 
in acute ischemic stroke was reported by Zhou et al. in 
2003 (22). The study revealed pH-sensitive APT effects 
in rat global ischemia models and demonstrated that APT 
signal was reduced in the induced ischemic area, consistent 
with pathophysiological evolution of ischemic stroke. When 
ischemia occurs, cerebral blood flow is impaired, leading 
to lack of metabolic supply, subsequently tissue hypoxia, 
acidification due to adenosine triphosphate breakdown (23), 
and if prolonged, cerebral infarction (21,24). 

Soon after the first preclinical study by Zhou et al. (22), 
reports on the characterization of the ischemic penumbra 
followed (25), demonstrating the potential of APT 
imaging in delineating the ischemic injury zones: the 
irreversible ischemic core, the salvageable penumbra, and 
the benign oligemia. Following this, many studies have 
been published on the potential use of APT imaging for 
stroke diagnosis (26-28), disease progression (29), and 
treatment monitoring (30) throughout the years.

The present review aims to summarize the journey 
of APT MRI in clinical stroke imaging after 17 years 
(2003–2020), report the prevalence of APT MRI applied in 
ischemic stroke patients, the breakthroughs in the literature, 
limitations in the various reported studies and how the 
future works can be streamlined to advance the use of APT 
MRI for stroke diagnosis. 

Methods

This study aimed to identify all published clinical studies 
documenting the use of APT MRI for the investigation 
of ischemic stroke in human patients. The studies were 
compiled according to a pre-specified protocol that outlines 
our search strategy and inclusion criteria, and quality 
assessment in accordance to the Preferred Reporting Items 
for Systematic reviews and Meta-Analyses (PRISMA) 
guidelines for systematic reviews (31). 

Study selection

To be included in this review, a study must satisfy the 
following criteria: 

(I)	 Original study that was published in peer-reviewed 
journals, excluding reviews;

(II)	 Study must involve human patients that exhibited 
ischemic stroke-like symptoms; animal only studies 
are excluded; 

(III)	 Ischemic stroke patients must have undergone 



3799Quantitative Imaging in Medicine and Surgery, Vol 11, No 8 August 2021

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(8):3797-3811 | http://dx.doi.org/10.21037/qims-20-1339

APT MRI; 
(IV)	 Results on APT MRI must be reported;
(V)	 Articles written in English only.
Three electronic  databases—PubMed,  Scopus, 

and Cochrane Library (Cochrane Central Register of 
Controlled Trials), were searched for clinical studies on 
APT MRI of patients with ischemic stroke. The built-in 
advanced search builder in the database websites were used. 
The search terms used were: ((chemical exchange saturation 
transfer magnetic resonance imaging) OR (CEST magnetic 
resonance imaging) OR (CEST MRI) OR (chemical 
exchange saturation transfer) OR (CEST) OR (amide 
proton transfer magnetic resonance imaging) OR (APT 
magnetic resonance imaging) OR (APT MRI) OR (amide 
proton transfer) OR (APT)) AND ((stroke) OR (ischemic 
stroke) OR (ischemic) OR (ischemia)). The search was 
further filtered to show only papers in English and papers 
published between 1st January 2003 and 31st December 
2020. Additionally, Google Scholar was used to check 
for related articles in the citing literature of the included 
studies.

After performing the search, articles were reviewed in 
increasing specificity to remove articles not fulfilling the 
set criteria via the title, then abstract, and finally the full 
text. Spreadsheet software was used to organize and assess 

the included study titles to remove duplicated entries. The 
abstracts were viewed through word-processing software. 
An article would be rejected if the title was irrelevant and if 
the abstract clearly failed to satisfy the set inclusion criteria. 
After shortlisting the search, the full text of each candidate 
article was reviewed to determine the final included studies. 
Any discrepancies in the results of the review were discussed 
in team meetings.

Stroke classification

Stroke has been categorized into different stages using 
several definitions. In this review, the classification was set 
according to the agreed definitions established in the Stroke 
Recovery and Rehabilitation Roundtable as reported by 
Bernhardt et al. (32): 

(I)	 Hyperacute, 0–24 hours from symptom onset; 
(II)	 Acute, 1–7 days; 
(III)	 Early subacute, 7 days–3 months; 
(IV)	 Late subacute, 3–6 months; 
(V)	 Chronic, more than 6 months.

Results

A total of 1,093 published articles were identified in the 
search, as shown in Figure 1. After removing duplicates 
and records that were not journal articles, a total of 546 
articles were identified, of which, 255 were excluded based 
on the title, leaving only 291 articles to screen. Through 
the abstract screening, only 125 articles were determined to 
be relevant. Among the 125 articles, only 14 were clinical 
studies involving human patients with ischemic stroke; the 
other 111 articles either only involved the use of animal 
stroke models (43 papers), were unrelated to APT MRI 
(10 papers), were unrelated to ischemic stroke imaging  
(43 papers), or were review papers (15 papers). 

Clinical Studies from 2003–2020

Figure 2 summarizes the included clinical studies related 
to the use of APT imaging in ischemic stroke patients and 
the timeline in which they were published. The number of 
published clinical studies showed a gradual increase over 
the years. In the 14 studies, a total of 282 patients had 
been scanned with APT imaging after accounting for those 
judged to be duplicate analyses (using the same patient data 
but for different purposes); the study by Harston et al. (33) 
and two studies by Msayib et al. (34,35) used data from the 
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Figure 1 Summary of inclusion/exclusion strategy.
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same patient cohort, while the study by Tee et al. (26) also 
had partial patient data overlap with the three studies. 

Six of the studies included only hyperacute stroke 
patients (26,33-37), three studies involved only acute stroke 
patients (29,38,39), one study included both hyperacute 
and acute patients (40), two studies involved acute and 
early subacute patients (41,42), while two studies involved 
patients from the hyperacute to early subacute stages (30,43). 
Further information on these studies such as the treatment 
received by patients, scanner field strength, radio frequency 
(RF) saturation scheme, imaging acquisition parameters, 
image acquisition time, APT effect quantification method, 
and other MRI sequences acquired, are presented in 
https://cdn.amegroups.cn/static/public/qims-20-1339-1.
pdf (44,45). For further details on the APT quantification 
methods e.g., the definitions as well as the respective 
advantages and limitations, please refer to Foo et al. (46). 

After the initial preclinical study on APT imaging in 
2003, the first clinical study on APT imaging of ischemic 
stroke patients was published by Zhao et al. in 2011 (38). 
The study proposed an optimized RF saturation scheme 
with the aim of establishing a standardized saturation 
scheme for following clinical studies. In Zhao’s study, the 
APT effect in four acute stroke patients were quantified, 
revealing APT signal in stroke lesions to appear hypointense 
compared to normal-appearing white matter (NAWM), 
consistent with the first animal stroke studies (22), thus 
demonstrating the feasibility of APT imaging of stroke 
patients on a clinical field strength scanner. 

Later in 2014, Tietze et al. (36) published a clinical study 
investigating the ability of APT imaging to distinguish the 
ischemic penumbra from the infarct core and oligemia in 
hyperacute patients, but yielded inconclusive results. In 
the same year, Tee et al. (26) performed a study comparing 
quantitative Bloch McConnell model-based analysis and 
conventional asymmetry analyses, and found that the 
model-based analysis was able to produce higher contrast-
to-noise ratio (CNR) than the asymmetry analyses. Using 
the model-based method, a relationship between the 
quantified APT effect and pH was determined, producing 
the first quantitative pH maps of ischemic stroke patients 
generated via APT MRI. 

In 2015, a proof of concept study on identifying the 
ischemic penumbra was published by Harston et al. (33). 
Contrary to the study by Tietze et al. (36), the quantified 
APT effect within the ischemic core was found to be 
significantly lower than that in the infarct growth, which 
in turn was lower than in the oligemia regions. This trend 

of reduction in the three injury zones demonstrated the 
potential of APT imaging for delineating the ischemic 
lesion.

Later in 2017, Song et al. (40) conducted a study on 
assessing the dynamic changes of APT effect during 
different stages of stroke. The study found APT effect 
in ischemic tissue to increase with onset time, reducing 
the contrast between ischemic and non-ischemic tissue 
as time progressed. In the same year, Heo et al. (37) 
published a study on improving the quantification of APT 
effect in ischemic tissue by using extrapolated semisolid 
magnetization transfer reference (EMR) data analysis, 
which was found to produce higher contrast between 
ischemic and non-ischemic tissue compared to asymmetry 
analysis. In another study, Park et al. (39) sought to optimize 
the saturation time for a three-dimensional (3D) turbo 
spin-echo (TSE) acquisition and Sinc-Gaussian saturation 
scheme. The optimized saturation scheme was then applied 
on an acute stroke patient as a proof of concept study.

In 2018, Lin et al. (29) published a paper on using APT 
imaging for assessing stroke severity and for predicting 
clinical outcome of acute stroke patients. The difference 
in APT signals within the ischemic and contralateral 
tissues at presentation was found to have significant inverse 
correlation with the National Institutes of Health Stroke 
Scale (NIHSS) and 90-day modified Rankin Scale (mRS) 
scores. Lesion APT signal was also significantly lower in the 
groups with poor prognosis compared to those with good 
prognosis. The study demonstrated the potential of APT 
imaging to predict patient prognosis and long-term clinical 
outcome upon imaging 24–48 h from symptom onset.

Then in 2019, Yu et al. (30) proposed the use of APT 
imaging as a biomarker of ischemic stroke recovery in 
patients receiving supportive treatment. APT effect was 
found to have significant correlation with post-treatment 
time, and the increase in APT effects post-treatment was 
associated with clinical symptom improvements while the 
opposite was observed in patients exhibiting aggravated 
symptoms, highlighting the potential of APT imaging 
in determining treatment efficacy of ischemic stroke 
treatment.

In the same year, Msayib et al. (34) published a study 
comparing APT quantification methods for optimal 
ischemic stroke imaging. The study found multi-pool 
Bloch McConnell model-based method to provide the 
highest CNR between the ischemic core and contralateral 
tissue among the tested methods, similar to the findings 
of Tee et al. (26). In a separate study, Msayib et al. (35) also 

https://cdn.amegroups.cn/static/public/qims-20-1339-1.pdf
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investigated the use of a partial volume correction (PVC) 
model to correct for partial volume effects (PVE). In the 
low PVE voxels, the PVC model produced a significantly 
decreased ischemic core signal. However, when analyzing 
the whole image slice (including low and high PVE 
voxels), similar results were observed with or without the 
use of PVC. 

Recently in 2020, Lee et al. (41) published a study 
investigating the repeatability of APT imaging of the 
brain during different clinical conditions and anatomical 
locations. With the tested imaging acquisition parameters 
and APT quantification method in the study, the stroke 
lesions imaged proved to have excellent repeatability among 
both intra- and inter-session scans.

Momosaka et al .  (43) later published a detailed 
investigation of the relationship between APT effect with 
clinico-radiological findings in ischemic stroke patients. 
It was discovered that APT effect was lower in the poor 
prognosis group compared to the good counterpart. The 
signal was also lower in patients with large infarctions, 
infarctions with low apparent diffusion coefficient (ADC), 
shorter time after onset, and high NIHSS and mRS scores, 
in line with the study by Lin et al. (29).

Lastly in the same year, Wang et al. (42) published a 
study quantifying the average proton exchange rate (kex) of 
all exchangeable proton species within brain tissue using 
an omega plot analysis. The quantified kex may serve as 
a potential surrogate imaging biomarker for metabolic 
changes of stroke and help for monitoring the treatment 
and evolution of stroke. 

APT effect in ischemic lesions

Figure 3 shows representative APT images of ischemic 
stroke patients adapted from the included studies 
(26,29,30,33,40,43). Generally, the clinical studies shared 
the consensus that APT effect in ischemic tissue (inclusive 
of the ischemic core, penumbra, and benign oligemia) is 
smaller compared to normal healthy tissue in early stroke 
imaging. This produces hypointense APT signals in the 
ischemic areas (Figure 3), as was reported in all the studies, 
in agreement with preclinical findings using animal models 
(47,48).

In the included studies, it was consistently hypothesized 
that the reduced APT effect is a result of tissue acidosis. 
Since APT is base-catalyzed and thus pH-dependent, APT 
effect is reduced within ischemic tissue that underwent 
tissue acidification as a result of impaired cerebral blood 

flow. This decrease in intracellular pH in ischemic tissue 
was estimated in the quantitative pH map generated by Tee 
et al. (26), as shown in Figure 3A, where the absolute pH 
was quantified through a relationship between quantified 
APT effect and pH level. 

Six of the included studies involved only hyperacute 
patients, scanned within 24 hours from onset (26,33-37), 
whereas the other eight studies involved patients that were 
scanned outside of this time frame (29,30,38-43). Among 
which, three studies investigated the progression of the 
disease with time, namely the studies by Song et al. (40), Yu 
et al. (30), and Momosaka et al. (43). All three studies found 
APT signal within the ischemic lesion to gradually increase 
with increasing time from symptom onset. In addition, Yu  
et al. further investigated the progression of APT signal 
pre- and post-supportive treatment (https://cdn.amegroups.
cn/static/public/qims-20-1339-1.pdf) and observed that 
post-treatment, APT signal was found to increase beyond 
the non-ischemic tissue such that the APT signal in the 
ischemic lesion became hyperintense when imaged ≥8 days 
post-treatment. 

In the studies by Song et al. (40), Yu et al. (30), and 
Momosaka et al. (43), the authors attributed the increase 
in APT effect days after symptom onset to an increase of 
intracellular pH. However, these deductions may only be 
partially true since it is difficult to estimate the degree to 
which intracellular pH was acting as the main contributing 
factor to the increased APT effect. As mentioned in the 
initial paper by Zhou et al., the drop in pH assumption is 
potentially valid during the hyperacute stage since water 
relaxation time and amide proton concentration should 
have negligible change shortly after the stroke onset (22). 

Nevertheless, the changes in water diffusivity or protein 
properties may influence the APT signal even in the acute 
stage. Inflammation as well as edema formation are also 
common occurrences following stroke which can change the 
magnetic properties of water. Additionally, regular changes 
in the brain such as protein synthesis and degradation, and 
the loss of cytoplasm days after the onset might alter the 
amide proton concentration. All these factors need to be 
taken into consideration; merely relating the increase in 
APT signal to pH changes may not be warranted especially 
in the later stages of stroke and more works are required to 
verify the association at all the time points. 

Identifying the ischemic penumbra

Of the 14 clinical studies included, four investigated the 

https://cdn.amegroups.cn/static/public/qims-20-1339-1.pdf
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ability of APT imaging in distinguishing the ischemic 
penumbra from the core and the oligemia regions, namely 
the studies by Tietze et al. (36), Harston et al. (33), Heo  
et al. (37), and Msayib et al. (34). However, there were 
mixed results reported among the studies. Representative 
results from two of the studies (33,34) are shown in Figure 4.

Tietze et al. (36) published the first clinical study 
comparing three regions of interest (ROIs): ischemic 
core, final infarct growth and at-risk tissue. In their study, 

inconclusive results were observed as only some patients 
displayed a trend of reduced APT signal in the ischemic 
core compared to the at-risk tissue. Upon performing group 
analysis, although there were significant differences between 
each of the ROIs with NAWM, there were no significant 
differences between any of the ischemic ROIs, even after 
excluding potential outliers (36). 

In contrast to the Tietze’s group, the study by Harston 
et al. (33) reported significant differences between the three 

Figure 3 Representative APT images adapted from the clinical studies. All the APT images show hypointensity within the ischemic regions 
compared to normal brain tissue indicated by the red arrow; black arrow shows the artifacts. (A) quantitative pH map of a hyperacute stroke 
patient at 1h 43m – 5h 46m post-onset, adapted from Tee et al. (26); the blue line outlines the infarct core; (B) pH-weighted image of a 
hyperacute stroke patient scanned at 2h 48m after onset, adapted from Harston et al. (33); (C) APT-weighted image of a hyperacute 
stroke patient at 2h from onset, adapted from Song et al. (40); (D) APT-weighted image of an acute stroke patient imaged 24–48 h post 
symptom onset, adapted from Lin et al. (29); (E) APT-weighted image of an acute stroke patient scanned at 1 day post onset, adapted 
from Yu et al. (30). (F) APT-weighted image of a hyperacute stroke patient scanned at 15h post onset, adapted from Momosaka et al. (43). 
All images were reproduced with permission from the publishers.
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investigated ROIs: ischemic core, final infarct growth and 
oligemia. Relative APT effect within the ischemic core was 
found to be significantly lower than within the penumbra 
which in turn was significantly lower than in the oligemia 
regions, as shown in Figure 4B. When compared to 
cerebral blood flow (CBF) and ADC, only APT was able to 
effectively distinguish between the penumbra and oligemia, 
although the comparisons with ADC and CBF were limited 
to just grey matter (33).

The study by Heo et al. (37) also observed positive 
results, where through the investigation of the spatial 
dynamics of the ischemic tissue, it was found that area 
of perfusion deficits was always larger than that of pH 
deficits—corresponding to the benign oligemia; pH 
deficits were equal to or larger than diffusion deficits—
corresponding to the penumbra. The mean relative APT 
effect was also showed a decreasing trend from perfusion/
pH mismatch, pH/diffusion mismatch, to the infarct core 
(diffusion deficit only) (37).

Using data from the same patient cohort as the study by 

Harston et al. (33), Msayib et al. (34) further investigated the 
differences between 3-pool and 4-pool Bloch McConnell 
model-based APT quantification. In Harston’s study, a 
3-pool Bloch McConnell model analysis was used (33). It 
was later verified in Msayib’s study that although a 4-pool 
model would be more biophysically accurate, the 3-pool 
model was found to produce an intermediate infarct growth 
between the ischemic core and oligemia, proving to be more 
useful in the delineation of the penumbra (34). Despite this, 
there were no significant differences found between the 
three ROIs using the 3-pool model in conflict to Harston’s 
study, although similar trends were observed (Figure 4D). 

In short, Harston’s (33) and Heo’s (37) findings suggest 
that APT imaging may be able to improve the identification 
of ischemic penumbra in future clinical use, while Tietze’s (36)  
and Msayib’s (34) findings were inconclusive. The 
conflicting results between the studies may be attributed 
to several factors. Firstly, this may be a consequence of the 
small study sizes and the opportunity for single patients 
to create spurious results. Another possible source of 
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contradiction is the use of different image acquisition 
schemes, quantification methods, and statistical approaches.

In the study by Tietze et al., the images obtained were 
three-dimensional (3D) images, while the other three 
studies assessed only single-slice images. It may be possible 
that the 3D CEST sequence used was not sufficiently 
sensitive to pick up on the variations within the different 
ischemic regions or that the quantification method used 
was not suitable for the sequence applied. Furthermore, 
absolute values were used for group analysis in the study 
which may not account for the different stroke severity and 
other variabilities. As previously pointed out, relative values 
are more suitable for groupwise comparisons (49). 

Similarly, the discrepancies between the studies by 
Harston and Msayib may be attributed to the different 
fitting limits used during the Bloch McConnell model 
fitting and different statistical approaches taken. Although 
the model-based method is useful for quantifying the pure 
APT effect uncontaminated by other confounding effects, 
the model fitting process is typically dependent on the 
initial values and fitting boundaries, as well as image quality, 
thus results are more variable across different studies, 
particularly with CEST systems that require a large number 
of pools or fitting parameters.

Overall, the results of the four studies suggest it might 
be possible for APT imaging to delineate the three injury 
zones, but larger validation studies are needed to determine 
the optimal experimental parameters and the suitable APT 
quantification method.

Limitations

The main limitation faced by the clinical studies is the 
recruitment of patients and potential bias this can introduce. 
This is especially challenging in the hyperacute setting 
when early treatment is time-critical, and patients can 
find it difficult to tolerate research MRI scans. Follow-up 
imaging can also be hard to acquire since 1 in 8 strokes are 
fatal within the first 30 days and almost two-thirds of stroke 
result in disability (50). Consequently, the recruitment of 
patients for follow-up scans to confirm APT findings is 
commonly incomplete, or leads to inconsistent final infarct 
definitions being used (7). 

Studies that aim to investigate APT effect across 
different stroke stages such as the studies by Song et al. (40),  
Yu et al. (30), and Momosaka et al. (43) face further 
challenges as the number of patients across different stages 
recruited should be sufficiently large to ensure repeatability 

and to minimize biases arising from a few dominant results. 
Although Lee et al. (41) demonstrated good promise in the 
reliability of APT imaging across different sessions, multi-
center investigations with larger patient sample size are still 
needed to prove the repeatability of APT MRI in different 
clinical settings.

Furthermore, many of the studies reported to exclude 
some patient data for analysis due to severe motion artifacts, 
further reducing usable patient data (29,30,33,40,42,43). 
Motion is an issue in MRI of stroke as patients may have 
difficulty to remain relatively still in the confined area for 
tens of minutes compared to CT imaging that is only a few 
minutes long. Most studies have made efforts to minimize 
patient motion or re-acquire corrupt acquisitions. Despite 
this, certain patient data still had to be excluded due to 
excessive motion.

Referring to https://cdn.amegroups.cn/static/public/
qims-20-1339-1.pdf, all the included studies were conducted 
using 3 T field strength scanners. Most MR scanners in the 
emergency room are currently 1.5 T. As the APT effect 
would be smaller at lower field strengths due to smaller T1 
relaxation time (51,52), it remains unclear if APT imaging 
of ischemic stroke can be translated to lower field strengths 
due to lower signal-to-noise ratio (SNR) (53). A recent 
study has shown that CEST imaging could work at 1.5 T 
for brain tumor imaging (54). However, the same has not 
been tested for clinical stroke imaging. To promote wider 
clinical adoption, the investigation of the performance of 
APT ischemic stroke imaging at lower field strengths would 
be beneficial and could be a potential research topic for 
future studies.

Other limitations of the studies concern the lack of 
standardization between the studies on the experimental 
methods such as the imaging acquisition schemes. Apart 
from Tietze’s (36), Park’s (39) and Lee’s (41) studies, the 
remaining clinical studies obtained only single-slice images 
for assessment. This leaves remaining parts of the stroke 
lesion unanalyzed, necessarily biasing the results. Ideally, 
volumetric imaging would be more clinically useful in 
the evaluation of the ischemic tissue, especially for the 
identification of the ischemic penumbra.

Although the first clinical study by Zhao’s group aimed 
to propose a standardized RF saturation scheme for APT 
imaging of stroke and brain tumor patients, subsequent 
clinical studies used differing saturation schemes. While 
the early studies used continuous wave (CW) saturation, 
majority of the following studies all used variations of pulsed 
or pseudocontinuous sequences owing to the limitations 

https://cdn.amegroups.cn/static/public/qims-20-1339-1.pdf
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in the amplifier duty cycle and the specific absorption rate 
(SAR) limit. Early APT studies also tended to utilize high 
saturation powers in order to suppress the NOE effects, 
but lower saturation powers were used in some of the later 
studies to cater to the slow exchange rate of amide protons 
[~28 Hz (22)] in order to increase the sensitivity to the 
observed APT effect (36).

The APT quantification methods of the studies were 
also heterogeneous, further complicating the comparison 
of results between the different centers. Of the 14 
clinical studies, four were on the comparison of different 
quantification methods to determine the optimal method 
for stroke imaging (26,34,36,37). In general, the studies 
found model-based quantitative methods to produce higher 
CNRs between stroke lesions and normal tissue and were 
thus deemed more optimal for stroke imaging. However, 
CNR may not necessarily be an accurate reflection of 
the actual pathophysiology (44) and is thus not a reliable 
metric for determining the optimal quantification method. 
Further, the computation times of some of the model-based 
quantification methods used in the studies were too long 
and are unlikely to be clinically feasible for acute stroke 
imaging, particularly the multi-pool Bloch McConnell 
model-based methods (55-57). 

Future recommendations

For successful clinical translation, experimental results 
must be consistently reproducible across different MRI 
systems by various vendors. Consequently, a great 
degree of standardization on the image acquisition and 
post-processing methods should be set for the effective 
comparison of results from different centers as APT effect 
has been shown to be highly dependent on experimental 
methods as  wel l  as  the parameters  used (58-60) . 
Nevertheless, as it is currently too early in the development 
of APT MRI for the standardization of these methods, a 
few recommendations and suggestions are presented for 
future studies.

In terms of the imaging scheme, volumetric imaging is 
crucial for clinical application and should thus be a point 
of focus in future studies. Volumetric imaging can be done 
through either multislice (61,62) or 3D imaging (63-65). 
Ideally, the optimal image acquisition method should be 
fast to accommodate short scan times, but still reserving 
adequate SNR for accurate APT quantification. Although 
there are several issues in the implementation of 3D APT 
imaging, such as saturation spillover effects, T1 relaxation, 

frequency drifting, and long image acquisition times, many 
studies have proposed potential methods or options to 
address these issues. 

Saturation spillover effects and T1 relaxation can 
be minimized using relaxation-compensated APT 
quantification methods, e.g., apparent exchange-dependent 
relaxation (AREX) which compensates for spillover effects 
and scales for T1 (66,67). Studies have also proposed 
imaging sequences to correct for frequency drift both in 
real time (68) and during post-processing (69). Additionally, 
to achieve clinically viable CEST imaging times, several 
imaging acceleration methods have been developed (21), 
including snapshot imaging (64,65), compressed sensing 
(70,71), and variably-accelerated sensitivity encoding (72). 
Other studies have also proposed optimized protocols that 
shorten acquisition time whilst preserving adequate SNR 
(65,67,73). 

Future investigations of ischemic stroke imaging using 
these imaging schemes or similar fast 3D imaging sequences 
would be required to fully assess APT effect within the 
ischemic volume. This would be particularly crucial for the 
identification of the penumbral volume to compare the APT 
deficit volume with the DWI and PWI deficit volumes, as 
was done previously in animal stroke models (27).

As for the quantification method, further investigations 
are still needed to determine the optimal quantification 
method for ischemic stroke imaging. In order to produce 
physiologically meaningful results, it is recommended 
that the methods should not only be evaluated in 
terms of contrast, but also their correlations with the 
pathophysiology (46). Further, it is also important to 
consider quantification methods with clinically feasible 
processing times. For now, it is suggested that future studies 
should report the most commonly used magnetization 
transfer ratio asymmetry, MTRasym (3.5 ppm) results 
along with the findings of the study in order to ease the 
comparison of results of future publications and the existing 
literature.

Finally, to minimize exclusion of patient data due 
to motion, it is recommended that a new registration 
framework be designed. Thus far in the literature, several 
different registration tools have been used for registering 
CEST images, e.g., the built-in function “imregister” 
in MATLAB (Mathworks, Natick, MA, USA), medical 
imaging interaction toolkit (MITK), statistical parametric 
mapping (SPM), and MCFLIRT in the FMRIB Software 
Library. These software or functions improve the alignment 
of the CEST images and minimize the effects of motion. 
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However, some of the registration tools utilize optimization 
methods that are prone to convergence to the local minima, 
resulting in inaccurate registration (74). Development of a 
new registration method or framework may help to improve 
the registration of motion-affected images and reduce the 
amount of data excluded due to the artifacts. Coupling this 
with the development of fast-volumetric imaging is one of 
the important milestones to translate APT MRI for clinical 
stroke imaging. 

Conclusions

Since the first preclinical study in 2003, 14 small clinical 
studies have been published demonstrating the potential 
uses of APT MRI in ischemic stroke imaging, including the 
identification of the ischemic penumbra, predicting patient 
prognosis, and monitoring treatment in patients with 
ischemic stroke. Although APT imaging has shown some 
promise in these applications, further development and 
larger investigations are still needed to verify the clinical 
opportunity offered by the translation of APT imaging into 
clinical practice. This is because patient characteristics, 
image acquisition and post-processing methods are 
heterogenous, minimizing the conclusions that can be 
drawn from the existing evidences. It is recommended 
that future studies should report the results of MTRasym  

(3.5 ppm) alongside other findings to reduce this 
contribution to the heterogeneity observed and to enable 
comparison of results between studies and centers. Future 
investigations should also focus on the development of 
volumetric imaging for full ischemic tissue assessment to 
faciliate clinical translation. 
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