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Background: Cardiovascular diseases resulting from aneurism, thrombosis, and atherosclerosis in the 
cardiovascular system are major causes of global mortality. Recent treatment methods have been based on 
catheterization of flexible endovascular tools with imaging guidance. While advances in robotic intravascular 
catheterization have led to modeling tool navigation approaches with data sensing and feedback, proper 
adaptation of image-based guidance for robotic navigation requires the development of sensitive 
segmentation and tracking models without specificity loss. Several methods have been developed to tackle 
non-uniform illumination, low contrast; however, presence of untargeted body organs commonly found in 
X-ray frames taken during angiography procedures still presents some major issues to be solved. 
Methods: In this study, a segmentation method was developed for automatic detection and tracking 
of guidewire pixels in X-ray angiograms. Image frames were acquired during robotic intravascular 
catheterization for cardiac interventions. For segmentation, multiscale enhancement filtering was applied on 
preprocessed X-ray angiograms, while morphological operations and filters were applied to refine the frames 
for pixel intensity adjustment and vesselness measurement. Minima and maxima extrema of the pixels were 
obtained to detect guidewire pixels in the X-ray frames. Lastly, morphological operation was applied for 
guidewire pixel connectivity and tracking in segmented pixels. Method validation was performed on 12 X-ray 
angiogram sequences which were acquired during in vivo intravascular catheterization trials in rabbits. 
Results: The study outcomes showed that an overall accuracy of 0.995±0.001 was achieved for 
segmentation. Tracking performance was characterized with displacement and orientation errors observed 
as 1.938±2.429 mm and 0.039±0.040°, respectively. Evaluation studies performed against 9 existing 
methods revealed that this proposed method provides more accurate segmentation with 0.753±0.074 area 
under curve. Simultaneously, high tracking accuracy of 0.995±0.001 with low displacement and orientation 
errors of 1.938±2.429 mm and 0.039±0.040°, respectively, were achieved. Also, the method demonstrated 
higher sensitivity and specificity values compared to the 9 existing methods, with a relatively faster 
exaction time. 
Conclusions: The proposed method has the capability to enhance robotic intravascular catheterization 
during percutaneous coronary interventions (PCIs). Thus, interventionists can be provided with better 
tool tracking and visualization systems while also reducing their exposure to operational hazards during 
intravascular catheterization for cardiac interventions.
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Introduction

The discovery of X-rays in 1895 led to a paradigm shift in 
surgical navigation. This has motivated the development 
of different techniques for segmentation and tracking 
of surgical tools in the fields of computer-assisted 
interventions. Recent advances in X-ray imaging such as 
computed tomography (CT) provide high quality three-
dimensional (3D) imaging with views of the functional 
anatomy and pathology of a patient’s internal organs during 
interventional procedures (1). While attempting to work 
around the loss of vision that is inherent to minimally 
invasive surgery (MIS), interventionists can be overexposed 
to different hazards in interventional rooms (2). Thus, 
minimizing the procedural times is a vital requirement 
for cardiac interventions. While the use of ultrasound and 
magnetic resonance imaging techniques for interoperative 
visualization during intravascular interventions has been 
established (3), concerted efforts are needed to improve the 
suitability of the fluoroscopic imaging approach.

Cardiovascular diseases from thrombosis, atherosclerosis, 
and aneurism in the cardiovascular system are major causes 
of global mortality, accounting for nearly 31% of deaths 
annually (4). Unlike open-heart surgery, intravascular 
catheterization has been a routine method applied for 
cardiovascular interventions (5). The procedure requires 
navigation of flexible endovascular tools, mainly guidewires 
and catheters, from peripheral points such as the radial and 
femoral vessels into the mediastinum, while visualization 
of the procedure is achieved using fluoroscopy. Extensive 
studies have been undertaken to develop robotic catheter 
systems with multi-axial degrees of freedom (DoFs) for 
safe and skillful intravascular catheterization (6). Similarly, 
X-ray imaging has been a primary imaging technique used 
during cardiac diagnosis. Research efforts have focused on 
vessel analysis, morphological interpretation, and tool-vessel 
segmentation during manual cardiac interventions. In robotic 
catheterization, issues include nonlinear proximal-to-distal 
motions transmitted along an endovascular tool, non-uniform 
illumination during X-ray angiography, tool-vessel structural 

similarities, and ineffective distal force sensing; which make 
catheterization time consuming, difficult, and unsafe (6-9).

Despite evidence supporting the use of medical imaging 
in percutaneous coronary interventions (PCIs), global 
adoption use of robot-assisted PCIs is limited, although 
the number of procedures performed annually continues 
to increase. This exposes both surgeons and patients to 
radiation and orthopedic hazards in the intervention  
room (2). Retrieving the shape and motion of the 
endovascular tools in sequences of X-ray angiograms is 
vital for tool visualization and characterization of the 
catheterization procedures during an intervention. An in-
depth review of segmentation methods and evaluation 
metrics has been presented (9). At first, image sequences 
are preprocessed with data normalization, contrast 
enhancement, and noise suppression to improve frame 
quality. Normalization is mostly addressed with techniques 
like global contrast normalization, zero-phase whitening, 
and gamma corrections. A multi-scale filter for reducing 
noise artifacts in angiographic images has previously been 
proposed (10). With this approach, vessels and endovascular 
tools can be detected in variant scales using eigenvalues 
and vectors of the Hessian matrix. Similarly, a multi-scale 
segmentation method for line-like structures has been 
adopted for tool segmentation in 2D and 3D medical  
images (11). These approaches are sensitive to artifacts 
from blob-like components that have similarities with the 
endovascular tools and vessels in an angiogram. A novel 
image filter for edge-preserving operation was proposed 
by some authors and has been adopted for catheter 
segmentation in many studies. Being a guided filtering 
approach, content of a guiding image is considered to form 
local linear models for image smoothing; however, it can 
simultaneously cause edge blurring in filtered images (12). 

Regarding noise suppression, methods based on 
directional filter banks have been proposed for image 
enhancement and proper segmentation in recent studies. 
For instance, a probability map with local directional 
geometry was proposed for automatic vessel segmentation 
and catheterization in X-ray angiograms (13). The use of 
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directional filter bank was presented for fast and accurate 
vessel extraction without time-consuming down-sampling and 
re-sampling procedures (14). Directional filter banks provide 
better segmentation results compared to the conventional 
Hessian-based methods (15). Some authors have tackled the 
drawbacks of edge blurring and intensity heterogeneity in 
X-ray images by combining a vessel enhancement method 
with directional filter banks and vessel similarity (10,13). An 
issue of automatic segmentation is the removal of non-vessel 
artifacts after vessel enhancement. Morphological methods 
can be used to address this problem. A vesselness measure 
based on Hessian-based guided filtering was adopted for 
detection and enhancement of vital regions within X-ray  
angiograms (16). A border detection method has been 
proposed to avoid confusion of diaphragm borders that are 
found in angiograms (17). 

Numerous studies have focused on tool segmentation 
such that tool navigation can be processed and visualized in 
X-ray angiograms with little effort. Nevertheless, studies 
on automatic endovascular tool segmentation and tracking 
during robotic intravascular catheterization are still limited. 
In recent years, available works include estimation of 
centerline pixels and caliber pixels in segmented vessels of 
an angiogram (18). For catheter segmentation, an object 
classifier was proposed for the suitable features of catheters 
when around the centerline in 2D angiogram images. A fast 
and automatic graphics processing unit (GPU)-based method 
was presented for tracking guidewire pixels in fluoroscopic 
image sequences (19). Also, in a related study, graph-based 
optimization modeling was approached by using a sequence 
of pixel segments to formulate and track guidewires in X-ray 
angiograms (20). To reduce X-ray exposure and improve 
surgical safety, a visual-based scale-adaptive algorithm was 
developed in a previous study for guidewire tracking (21). 
The tool segmentation and tracking methods reviewed were 
categorized as model-based and learning-based approaches. 
While both utilized pattern recognition, learning-based 
segmentation and tracking approaches have yet to be studied 
for robot-assisted intravascular interventions. A recurrent 
residual network was applied for segmentation and catheter 
tracking during endovascular aneurysm repair (22). Relatedly, 
a model based on deep neural networks for guidewire tracking 
during robotic navigation was proposed (23). Successive 
localized frames were utilized for tracking; however, the study 
did not involve the use of X-ray image frames. 

Some researchers developed a real-time catheter 
segmentation method for robotic endovascular intervention 
using optical flow-guided warping (24). The model could 

segment and track catheters in 2D X-ray sequences using only 
raw ground-truth for training. Evaluation of the study was 
carried out with phantom-based angiograms. While learning-
based systems can learn essential features from input data, 
the effective application of endovascular tool segmentation 
and tracking requires images from mammalian subjects 
and undertaking the tedious manual ground-truth labeling. 
Despite the above-mentioned studies, automatic guidewire 
segmentation and tracking is still a challenge during robotic 
intravascular interventions. Thus, in this paper, we propose 
a robust method for automatic segmentation and tracking of 
guidewire during robotic intravascular catheterization. This 
study is part of an incremental project on the development 
of a data-guided interventional robotic system for cyborg 
autonomy during PCIs. The robotic system follows an 
iterative prototyping from early generations proposed for 
intravascular cardiac interventions (5,25,26). 

Robotic motion control was based on modeling 
direct navigation of a master device and mapping its 
scaled displacement to operate a bed-side slave robot for 
intravascular catheterization of guidewire. The presented 
segmentation method adopts morphological operators and a 
multi-scale enhancement filter for processing X-ray frames 
and vesselness measurement, while minima and maxima 
extrema were obtained for valley or ridge classification 
to delineate guidewire pixels from the background. Also, 
morphological dilation was applied with structuring elements 
to connect and track the guidewire pixels in segmented 
images. The robot was integrated to initiate cyborg 
catheterization with closed-loop multimodal control. The rest 
of this paper is organized that: design of the robotic catheter 
system developed for intravascular interventions and the 
proposed segmentation and tracking method are introduced 
in the Methods section; the experiments carried out for data 
acquisition, method validation, results, and evaluation studies 
are analyzed and discussed in the Result section; lastly, the 
conclusion and outline of future works are presented in the 
Conclusions section.

Methods

Design of the robotic catheter system 

The robotic system designed for intravascular interventions 
in this study is displayed in Figure 1. This system was 
aimed at reducing interventionists’ exposure to operational 
hazards during interventions. The platform was designed 
for seamless remote catheterization of flexible endovascular 



2691Quantitative Imaging in Medicine and Surgery, Vol 11, No 6 June 2021

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(6):2688-2710 | http://dx.doi.org/10.21037/qims-20-1119

A - Control Station 

B - Master Control Device 

C - Operational Room 

D - Slave (PCI) Robot 

E - Imaging MachineA

E

C

DB

Figure 1 Computer-aided design (CAD) model of the robotic catheter system. 

tools during cardiac interventions. As part of the iterative 
prototyping, the current platform includes both master and 
slave mechanisms for teleoperated navigation of endovascular 
tools (i.e., guidewire and catheter) during intravascular 
interventions. The mechanisms are robotic devices capable 
of motion control of 2 or more DoFs for axial and radial 
navigation of endovascular tools. The devices were designed 
with isomorphic similarities to how interventionists use their 
hands and fingers for tool manipulation during intravascular 
interventions. The core components are presented below.

Master control device

The master device is a portable 2-DoF robotic mechanism 
45×19×13 cm3 in size and located at the shielded remote 
cockpit where operators sit to issue manipulation control. 
The device has smart knob and clamp controllers for 
guiding axial and radial catheterization control, maintaining 
a fixed guidewire position, and changing orientation of 
the flexible tool when clamped during interventions. A 
proximal force sensor is fixed for sensing and feedback of 
the robot-tool grasp force. The knob has a magnetostrictive 

electromagnetic bar to provide motion (position and 
orientation) control data. Control signals are decoded 
from the potentiometer sensor bar and transmitted to the 
slave device. The latter was designed to drive endovascular 
tools with axial feed accuracy ≤0.5 mm and radial feed 
accuracy ≤0.5° during cardiac catheterization. A dedicated 
minimal-delay (less than 100 ms) control protocol based on 
sampled communication signals was employed. Axial, radial, 
and hybrid motions were implemented to mimic natural 
operations in the catheterization labs. Interventionists can 
use the master device, which is coupled with the display 
unit from a control station, to guide the bed-side (i.e. slave) 
robotic device during intravascular cardiac interventions. 

Slave control device

The slave control device is a 4-DoF robotic device 
57×22×16 cm3 in size located nearby inside the operation 
room. Aside from the 2-DoF motion coordination that the 
“main knob” in the master device provides, a tool clamp 
knob is also included in the design, as shown in Figure 1.  
The former, regarded as the main DoF manipulator knob, 
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Figure 2 Schematic view of proposed tool segmentation and tracking method in X-ray angiograms.

can be used to issue axial and radial control signals for 
operations of the slave robot, whereas the latter, a tool 
clamp knob, is for grasping and setting vertical orientation 
of the flexible endovascular tool in the slave robot. The 
design mechanism of the slave robot is an improvement 
over its initial prototypes (5,25,26). Unlike the earlier 
generations, the current prototype has an isomorphic design 
with in-built sensing units for unified surgeon–robot cohort. 
Also, the control system utilizes a distributed minimal 
delay (≈0.1 s) protocol based on motion variables sampled 
from TCP/IP communication. Axial translation, radial 
rotation, and their hybrid were implemented to mimic 
natural operational methods in the interventional rooms. 
Similar to power distribution in the second generation (5), 
the robotic mechanism operates on an in-built 8,000 mAh 
lithium battery pack. As shown in Figure 1, the slave control 
device is operated under X-ray fluoroscopy to produce 
angiograms for real-time visualization of the procedures. 
During catheterization with the robotic system, contrast 
dye can be injected to aid acquisition of angiograms with 
navigation views of the endovascular tools and possibly the 
blood vessels. Either 2D or 3D X-ray images, which allow 
interventionist visualization, can be acquired at low or high 
resolutions and with or without angiography subtraction.

Guidewire segmentation and tracking

Unlike the existing works presented in Section 1, a novelty 
of the proposed segmentation and tracking method 

stems from the use of intensity-based pixel analysis 
for image preprocessing, vesselness measurement, and 
segmentation and tracking of endovascular tools in X-ray 
angiograms. The edge-preserving method was developed 
for automatic segmentation and tracking of guidewire 
during intravascular cardiac catheterization. This omits the 
computation costs required for centerline estimation and 
optimization procedures present in previous works (15-21). 
By adopting the process illustrated in Figure 2, the proposed 
segmentation and tracking method started with in-vessel 
extraction of guidewire pixels in X-ray angiograms based on 
multi-scale differential geometric approaches. The method 
consists of 4 sequential phases, and details of the procedures 
at each phase are discussed herein.

Sequential frame preprocessing
Sequences of X-ray angiograms captured with the robotic 
system can be employed for visualizing and analyzing 
movement of the guidewire in patient vessels. However, 
the frames mostly have low contrast intensities with non-
uniform pixel representation which makes it hard to 
differentiate pixels of guidewire from those of background 
and/or blood vessels. To address this challenge, multi-scale 
top-hat transformation was adopted to distinctly enhance 
pixel contrast in each frame. Pixel details are extracted as 
differences between an image frame and its morphological 
opening with respect to structured neighboring elements. 
The latter is a binary valued neighborhood obtained with 
the morphological dilation and erosion operations briefly 
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introduced in this subsection. Suppose ( ),X y Y z Z∈ ∈  is 
a grayscale image obtained after adjusting the intensity 
values of an input angiogram, grayscale expansion (27) is 
performed with the local maximum operator in Eq. [1] on a 
structuring element, ( ),H y z′ ′ .

( ) ( ) ( ) ( ){ }, , , | , HX H y z max X y y z z H y z y z D′⊕ = − ′ ′ ′ ′ ′− + ∈
  
[1]

Where y and z coordinates are of pixel in the grayscale 
image (X), while y' and z' are the structuring element's 
pixel location at which the structuring element fits 
the input image. DH is the domain of a flat structuring 
element, and local maximum operator is considered as 
the pixel neighborhoods determined by the shape of DH. 
The structuring element rotated around and traversed 
all locations in the image, while values of the rotated 
structural element were added to pixel values of the image 
to determine the maxima of translated positions. Similarly, 
grayscale corrosion was performed on X(y,z) by replacing 
the addition operation in the right-hand side of Eq. [1] 
with subtraction (13). We considered the local minimum 
operator from the neighborhood of a given pixel. Hence, 
X(y,z) would be outside the domain of the grayscale image 
−∞:+∞. Morphological opening and closing were performed 
to sequester pixel values of the foreground and background. 
These regions were achieved by performing the contrast 
enhancement operations, given in Eq. [2], on the frames. 
The definitions of Xfg and Xbg are shown in Eqs. [3,4]. These 
produced angiograms with distinct bright and dark regions 
obtained from morphological opening ( )  and closing ( )•  
operators at different scales of the structuring elements. 

( ),en fg bgX y z X X X= + −
	

[2]

( ) ( ) ( ), , ,fgX y z X y z X H y z= − 

	
[3]

( ) ( ) ( ), , ,bgX y z X H y z X y z= −

	
[4]

Pixels representing the guidewire were searched 
by subtracting the first image frame from subsequent 
ones. However, an angiogram sequence shares similar 
background pixel values with slight inter-frame variations. 
These changes are due to non-uniform lighting and 
subjects’ cardiac movements during fluoroscopy. Thus, 
a preprocessing stage was observed to eliminate artifacts 
introduced by fluoroscopy. Since the noise features are 
dissimilar and cause abnormal morphology with varying 
statistics across the resulting frame, a denoising step was 
incorporated. For this, global pixel normalization operation 
was performed to convert angiogram pixel values into a 

common space. This partially dealt with pixel variations 
caused by diverse illumination exposures and enhanced 
segmentation of anatomical and pathological structures 
in an angiogram. Linear normalization, shown in Eq. [5], 
was adopted for dynamic range expansion by stretching the 
frame’s histogram to have a proper grayscale distribution.

 ( ) 1

1
enen max min maxXX N N N

e
β

α
−= − +

+ 	

[5]

Where α and β define the width of the input intensity 
range and the intensity around which the range is centered. 
Furthermore, median filtering was adapted for nonlinear 
noise elimination. This was employed to improve the 
signal-to-noise ratio of the enhanced image frames and dim 
out the remaining artifacts.

Vesselness measurement and analysis
After preprocessing the image frames, measurement of 
the pixels’ vesselness was staged to further process the 
angiograms. The preprocessing procedures were proposed 
as filtering the image frames to explore the geometric 
features of anatomical and pathological structures in an 
enhanced angiogram image. A measurement scale varying 
within a certain range can be used to detect tubular 
structures even at different sizes. To determine a vesselness 
map, we used multi-scale enhancement filtering. The 
anisotropic filtering method was employed to enhance line 
structures in the enhanced angiographic images starting 
with the Taylor series expansion in the neighborhood of 
point xo, as in Eq. [6]. This approximated the geometric 
structures in the enhanced images up to a second order 
using its gradient vector ( ),o σ∇ , and the Hessian matrix 
computed on point xo at a scale σ. Furthermore, matrix 
( ),o σ  was defined using Eq. [7], where its entries were 
obtained by convolving the derivatives of Gaussian function 
along vertical and horizontal directions on image enX .

 ( )  ( ) , ,δ , , δ δ+ δT T
v o o en o o o o o oX x x X x x x xσ σσ σ+ ≈ + ∇  	 [6]

yy zy

yz zz

X X
X X
 

=  
 


	

[7]

The second derivative of the Gaussian kernel was used 
at a given scale to measure the pixel contrast values of 
the kernel probes around the scale ranges −σ:+σ along 
the direction of the derivative. As proposed in Eq. [11], 
local behavior of the image enF  obtained in Eq. [5] was 
derived as a convolution (*) of point xo in the image with 
derivatives of its Gaussians at a scale s {Eq. [8]}. The 
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γ factor was introduced to ensure that response of the 
differential operators induced normalized derivatives 
for fair comparison at multiple scales. Analyzing the 
Hessian information gives a rational classification that can 
enrich vessel segmentation in the enhanced angiograms. 
Thus, pixel vesselness was computed with respect to the 
eigenvalues and eigenvectors of o,σ  at multiple scales.

 ( )  ( )
( )

2

22

2

1  , *
2

x

en en
x x

X x X x e σγσ σ
πσ

 
 −
 
 ∂ ∂

=
∂ ∂

	

[8]

Eigenvalues that correspond to the kth normalized 
eigenvector  

,ˆ kσu  of o,σ  computed at σ are displayed in Eq. 
[9]. The eigenvalues are combined into a discriminant 
function that has a maximum response for structures 
behaving as a tube at scale σ. Thus, the vesselness index 
acquired from the different values of σ in Eq. [10] can be 
analysed to obtain a final estimate of vesselness with Eq. [9]. 

T
σ,k σ,k o,σ σ,kλ u ûˆ= 

	
[9]

 ( )
2

2 2
en

2 2

0 if λ 0

X =
exp 1 exp else

2β 2c

>


     − × − −          

  

	

[10]

( )  ( )( )
min min

 
v enX γ max X , γ

≤ ≤
=
  


	

[11]

Where   is a ratio denoting the largest cross-sectional 
area that accounts for deviation from a blob-like structure 
and simultaneously distinguishes between line and plate 
patterns in the second order structure of the image 

en
x

X
 ∂
 ∂ ;   is a local degree measure of the cross sectional blobness 

of the image structure. The factors are parameterized as 
1

2

λ
 
λ

 , and 
2
k

k

λ∑ , while β and c are used to regulate 
the sensitivity of structure contrast values with respect to 
noise artifacts and background, respectively. Also, λ1 and 
λ2 are eigenvalues of the Hessian matrix of the Gaussian 
filtered image in decreased absolute order sorting. 
Maximum filtering response can be obtained at a scale 
that approximately matches sizes of vessels to detect. This 
can be used to extract the principal directions in which 
local second order structure of the image decomposes. In 
general, increasing values of β and c increases the response 
to features of the tubular structures in an image being 
processed and suppresses the noise and texture in the 
background, simultaneously. Thus, the parameters should 
be effectively tuned to values that keep the guidewire 
detectable in the angiogram image frames. Intensity values 
of the pixels are further remapped by adjusting contrast of 

the images. This heuristic step yielded contrast enhanced 
frames, with geometry of the vessel-like structures in the 
angiograms becoming more visible afterwards.

Guidewire detection
Segmentation of guidewire pixels was performed by filtering 
the intensity values of tool pixels and other structures at 
neighboring pixels at unique thresholds. It was observed that 
intensities of the guidewire pixels are lighter and appear as 
valley points in a neighborhood. Results from the vesselness 
geometrical discrimination yield processed image frames 
with valley-like and ridge-like hallmarks. The general 
extrema detection method, as discussed by Rasche (28),  
was adopted to find positions where adjacent values are 
simultaneously maximum and minimum. This localization 
technique was applied along the four major principal 
orientations (i.e., axial and diagonal directions) of an image’s 
pixels in order to observe the extrema. For simplicity, it was 
assumed that the ridge or river components of an image 
were the pixels that traverse the image with maximum and 
minimum extrema. 

The vessels were taken as valleys that enclose the 
endovascular tool at the highest extrema. Processing of only 
the tubular structures in the image was used to bypass the 
time-consuming process of edge-linking used in conventional 
edge detection methods. Thus, existing methods and criteria 
(28,29) that had been defined for evaluating ridges and valleys 
were adopted. For instance, the presence of a maximum 
extrema can be observed in Eq. [12] by comparing the center 
pixel p, as a point (p0) in a given n×n neighbourhood, with 
a value of ( ),vX y z  higher than its 2 neighbouring axial and 
diagonal pixel values, respectively. Equally, the 2 signs in  
Eq. [12] are inverted for the minimum extrema case. The 
count per pixel is determined as 

d
vX

σ
∑ 

 to find the valleys and 
their ridges; where d represents direction (axial or diagonal) 
of the adjacent pixels being compared.

( )( ) ( )( )1 2, , 1

0
v vd

v

p X y z p X y z
X

else

 < ∧ >= 


 



	

[12]

After the maximum and minimum extrema are obtained, 
probability that a pixel is for a background or guidewire is 
computed by finding the ridges and valleys in the processed 
image. For this, the 2D crease condition ( )

2

0 | 0
x

 ˆ  nD
v x ya X L p

 ∂
∀ ∈ ∂ 



u  is 
adopted (30). Valleys in the image are also determined as 
the loci of the extrema using Eq. [13]. This can be used for 
detecting the endovascular tool which moves along as the 
vessel ridge is being cannulated. Parameter n

|x yL ∈R  are the 
local extrema in a spatial domain of the 2D function f(x,y) 



2695Quantitative Imaging in Medicine and Surgery, Vol 11, No 6 June 2021

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(6):2688-2710 | http://dx.doi.org/10.21037/qims-20-1119

for a point p0 in the processed image, μv is the threshold 
value used to detect the valley pixels, and | 1,2n nλ =  and û are 
eigenvalues and eigenvectors of the processed image (31).

( )

( )
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Tool tracking
Following the guidewire detection approach discussed 
above, pixels of the tool are merged to track the 
endovascular tool during catheterization. For this, the 
processed image with marked ridge pixels is dilated. This 
shift-invariant operation {Eq. [14]} expands the disparate 
pixels in the image with morphological operations and 
structuring elements. The value ( ) 

0v e
X p  is a translation 

of the pixel at point (p0) in  
vX , and   e SE∈  is the set of 

structuring elements applied. Thus, the ridge pixels 
become bigger with unique intensity, while the broken and 
disjointed areas are filled and connected by spaces smaller 
than the structuring element. 
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A connectivity step is applied to validate if guidewire 
pixels in the segmented image are properly connected, 
while the unconnected pixels are left as noise artifacts. Tool 
movement is determined as displacement and orientation 
between consecutive frames and highlighted at the tip to 
notify interventionists about the navigation process. The 
tool tip is initialized with coordinates of an introducer sheath 
used for path creation and guiding the endovascular tool at 
the vascular entry point during intravascular interventions. 
Since vascular cannulation actually starts from a rear position 
of the introducer, this point will be constant across all frames 
obtained during a catheterization procedure. Thus, the 
point’s coordinates are taken as the tip of the guidewire in 
the first frame while the tool displacement is computed as 
a vector defined on the 2 points ( ) ( ){ }  ,v i v jX p X p  , as shown in 
Eq. [15]. Also, orientation is taken as the vector direction 
using  the dot product in Eq. [16]. Thus, positions of the 
tool tip in every consecutive n frame can be analyzed and 
visualized by the interventionists with lesser burden while 
tracking the tool’s movement in specific frames.
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Results

To validate the proposed guidewire segmentation and tracking 
method, 12 in vivo robotic intravascular catheterizations were 
performed, and X-ray angiograms acquired during the trials 
were saved. The experimental details are provided herein.

In vivo experiment setup

Several in vivo trials were carried out with the master–
slave robotic system used for PCI by cannulating a vascular 
pathway in a rabbit (weight: 2.5 kg). In this trial, robotic 
catheterization was performed by navigating the auricle-
to-coronary arterial path in a 22-week-old Chordata 
animal. Based on this setup, the robotic catheterization was 
performed by navigating a 0.014” guidewire (Abott Vascular, 
Diegem, Belgium) from auricle entry up into vessels of 
the heart of the rabbit. Guidewire selection was based on 
properties of the targeted vascular pathway, such as diameter 
and tortuousness. Animal care followed the procedures 
advocated and approved by the Ethical and Use Committee 
of the Institution (SIAT-IACUC-200528-A1289). A total 
of 40 μg/kg of anticholinergics was used to pre-medicate 
the rabbits intramuscularly with 2.5 mg/kg of isofluorate, 
intravenously. A total of 5 operators from Shenzhen 
Institutes of Advanced Technologies, Chinese Academy of 
Sciences participated in the robotic catheterization tasks 
with varying intravascular tool manipulation skills. 

The robotic system was successfully used to catheterize 
the guidewire along the auricle-to-coronary vessel 
of the rabbit while X-ray angiograms were acquired. 
Details of the master–slave system are discussed in the 
Introduction section. A control program was developed for 
teleoperation of the master-slave robot and implemented 
with python programming language. A cone-beam 
computed tomography (CBCT) system was used for X-ray 
fluoroscopy during the robotic catheterization. The CBCT 
includes two-dimensional imaging with circular sliding 
axis movement. In this study, the CBCT was equipped 
with a 70 kV (and 5 mA) generator and a flat detector for 
generating X-ray 2D angiograms. The imaging system was 
developed using C++ with Microsoft Foundation Class 
(MFC) library in Microsoft Visual Studio 2013 (Microsoft 
Corp., Redmond, WA, USA), and ran on a workstation 
with Intel duo processor Core i3-3420 (Intel Corp., Santa 
Clara, CA, USA) at 3.10 GHz each, and 16 GB RAM. The 
angiograms generated were used to validate the proposed 
method for segmentation and tracking of guidewire during 
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the catheterization procedures.

Experimental results
This section is focused on the validation outcomes obtained 
when the proposed method was used for automatic 
guidewire segmentation in an in vivo robotic catheterization 
dataset. The method consists of two major procedures: 
segmentation and tracking. The results of each step in the 
two procedures are presented and discussed in the following 
subsections.

Segmentation results
The segmentation procedure involves detection and 
delineation of guidewire in the X-ray angiograms. Thus, 
the environment in which the model was implemented is 
discussed along with the appropriate parameters chosen 
for the implementation. The method was implemented in 
Matlab version R2019a (The MathWorks, Natick, MA, 
USA) installed on a Lenovo desktop computer with an 
Intel duo processor Core i7-6700 (Intel Corp.) at 3.40 
GHz each, and 32 GB RAM. In the validation study, we 
applied the proposed method on the dataset which consists 
of 12 X-ray sequences with a total of 13,689 image frames. 
The angiographic images were projected with 1,440×1,560 
pixels and 0.18×0.18 mm2 resolution. The multiscale 
detection top-hat transformation was done with diamond-
shaped structuring elements with a size of 7, while line 
structuring elements with a size of 17 were used for the 
morphological dilation applied for tacking the guidewire 
during the catheterization process. To differentiate 
background pixels from those of the guidewire, heuristic 
pixel threshold adjustment was performed, while threshold 
values of 0.05 and 1 were applied to map out the low 
and high contrast pixels for ridge detection, respectively. 
The multi-scale vessel enhancement was done with scale 
layers =7, scale ratio =2, β =0.5, and c =15. These values 
were defined as maximal filters over all pixel scales of the 
images.

The segmented frames obtained with the proposed 
method were used for guidewire detection and tracking in the 
12 X-ray sequences. The results obtained for two sequences 
are shown in Figure 3. Each row presents the chosen frames 
in a sequence while the 4 columns display the original X-ray 
angiogram along with the results achieved at different stages 
of the procedure. The segmented guidewires are represented 
by white colored pixels appearing within the background 
pixels (black color) in each plot. Results from cases of the 
first and last trials’ sequences in Figure 3 are given. These are 

sample trials in which focused movements of pull and push (the 
main catheterization tasks) were used for tool delivery during 
intravascular interventions. The 2 catheterization operations 
in the figure are push operation from the first data sequence 
and pull operation from the last data sequence in Table 1. In 
both trials, the guidewire was catheterized along different 
in vivo paths by different subjects. It can be observed in the 
guidewire segmentation results that the proposed method 
could successfully detect the majority of guidewire pixels in 
each frame of the 2 sequences. Further, the result shows that 
the majority of the background pixels were identified when 
the inter-frame subtraction operation, shown in Figure 3C,  
was performed as the first procedure. This left limited 
speckles and noises which were identified and removed during 
vesselness measurement (Figure 3C). By applying the extrema 
detection mechanism on intensity values of the processed 
images, pixels of the guidewire were separated from other 
line-like objects in the angiograms. Results of this step are 
shown in the fourth and eighth columns of Figure 3C. Similar 
results were achieved for the remaining 12 sequences, but 
these are not displayed due to space limitation. A total of 6 
binary pixel classification metrics namely, accuracy (ACC), 
sensitivity (SEN), specificity (SPE), negative predictive 
value (NPV), false discovery value (FDV), and Matthews 
correlation coefficient (MCC) were used as defined in Eq. [17] 
to validate the segmentation performance. The parameters 
used in the computation were derived from the 4 outcome 
metrics: true positive (TP), the number of guidewire pixels 
that were correctly detected; false positive (FP), the number 
of background pixels that were classified as guidewire pixels; 
true negative (TN) the number of background pixels that 
were correctly classified; and false negative (FN), the number 
of guidewire pixels that were incorrectly classified. Mean 
values of the evaluation metric obtained for the 12 sequences 
are presented in Table 1. Simultaneously having high SEN 
and SPE values indicated that the method could detect 
the guidewire and background pixels distinctively in the 
angiograms. The false discovery predictive rate was defined as 
a likelihood value to account for incorrectly detected pixels. 

Furthermore, MCC was used to provide a validation 
with balanced measure in the presence of class imbalance. 
Presence of class imbalance in the dataset could be taken 
as a reason for having very high accuracy values and lower 
sensitivity, simultaneously. The high ratio of background 
pixels in the angiograms caused high true-negative values 
which made the accuracy values very high. The specificity 
values should be explained to avoid misinterpreting the 
proposed method as a non-perfect detector of guidewire 
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Figure 3 Segmentation of guidewire in X-ray sequences acquired during push and pull auricle-to-coronary intravascular catheterization 
in rabbits. The “L” captions indicate image segmentation results for the push operation in the first X-ray sequence, while “R” captions are 
the segmentation results for the push operation in the last X-ray sequence. (A) Original angiogram; (B) initial preprocessing results; (C) 
vesselness measurement results; (D) guidewire tool detection results.

pixels if its segmentation performance is evaluated based 
on sensitivity. Performance of the method can be further 
interpreted by the relatively high NPV. If the high 
accuracy and specificity are due to the considerably high 
NPVs, the moderately high FDV shows that the method 
could discover misclassification from type 1 error in null 
hypothesis testing. The MCC values could indicate that 
the segmentation method is nearly stable, as it shows the 
magnitude of correlation between the binary classes; that 
is, values of the ground-truth pixels and those of pixels 
detected in the segmented frames.

[17]
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It is important to state that the performance varied 
with the number of guidewire pixels in each angiogram 
during the push and pull operations, respectively. The poor 
validation results obtained in the cases of some metrics 
such as SEN and MCC agree with the outcomes of a few 
previous studies (32). 

Guidewire tracking results
The validation results obtained when the proposed method 
was used for tool tracking are discussed in this section. 
Subsequent to guidewire segmentation, tracking results 
from the proposed method were also validated. For this, 
the motion of guidewire structure in the angiograms 
was realized by tracing tip displacement and orientation 
of the segmented guidewire in the angiogram. First, 
tip displacement and orientation of the guidewire were 
computed to trace the segmented tool pixels in each 
angiogram. Tracking results were obtained at a frame 
interval of 50 in the 12 sequences reported in Figure 3. As 
presented in Figure 4, tracking was indicated with a cyan 
mark along the guidewire pixel border in each angiogram. 
Samples of the first and last sequences in the catheterization 
trials are shown in Figure 4B and Figure 4D, respectively. 

The plots show that the proposed method successfully 
tracked the guidewire tip upon sufficient tool segmentation 
from the image sequences. Nevertheless, pixel connectivity 
was observed as a major issue in many frames; thus, 
performance of the tracking procedure was considered. 
Inter-frame displacement and orientation were used to 
compute the cannulation translation length and rotation 
degrees which are overlaid in each plot of Figure 4B and 
Figure 4D. 

Tracking performance was validated with the 3 different 
metrics, including tracking error (ERR), connectivity 
(CON), and (Area), as defined in Eq. [18]. The δ(∙) operator 

Table 1 Mean segmentation performance 

ID ACC SEN SPE NPV FDV MCC

1 0.994 0.238 0.997 0.996 0.561 0.281

2 0.996 0.666 0.997 0.999 0.565 0.534

3 0.996 0.627 0.997 0.999 0.553 0.527

4 0.996 0.664 0.997 0.999 0.514 0.566

5 0.994 0.229 0.997 0.997 0.726 0.248

6 0.995 0.677 0.996 0.999 0.559 0.543

7 0.994 0.434 0.996 0.998 0.712 0.347

8 0.994 0.461 0.997 0.998 0.552 0.451

9 0.996 0.563 0.997 0.998 0.557 0.495

10 0.994 0.496 0.996 0.997 0.548 0.471

11 0.994 0.551 0.996 0.998 0.518 0.512

12 0.995 0.637 0.997 0.999 0.657 0.525

ACC, accuracy; SEN, sensitivity; SPE, specificity; NPV, negative 
predictive value; FDV, false discovery value; MCC, Matthews 
correlation coefficient.

La1 Ra1

La2 Ra2

Lb1 Rb1

Lb2 Rb2
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Figure 4 Tracking of guidewire pixels in X-ray angiograms during push (L) and pull (R) of auricle-to-coronary catheterization sequences in 
Figure 3. (A) Original angiogram. (B) Tracked guidewire pixels are marked in cyan color.
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La5 Ra5

La6 Ra6
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was used to find variance of guidewire displacement and 
orientation between segmented and ground-truth images. 
Connectivity index has been considered as a major metric 
used to validate tracking performance in some applications 
(9,33). We modified the definition to avoid error summation 
in cases when guidewire pixels were not found in ground-
truth frames. Connectivity index is the percentage ratio 
of the number intersections at corresponding locations of 
guidewire pixels (Fi) with respect to ground-truth pixels (G) 
in an ith segmented frame and the manually labelled image. 
Area is a percentage metric used to validate the guidewire 
pixel tracking overlap between Fi and G; the ( )ℵ   is a 
morphological dilation. It was realized that the outcome 
of the tracking metrics depends on performance of the 
segmentation. The mean tracking accuracy, connectivity, 
and tracking area obtained for the 12 sequences are 
presented in Table 2. The tracking error includes both the 
average displacement and orientation errors. 

Despite the proposed method shows a good tracking 
ability, high tracking error values were obtained in some 
angiograms such as the 12th sequence. This could be 
attributed to presence of noise speckles at points where 
guidewire pixels intersect in segmented and ground-truth 
images. The catheterization trials involved the clockwise 
and counter-clockwise radial motions. These can be 
observed from the guidewire’s tip pose data, typically, its 
orientation. 

Validating the guidewire’s response to radial operations 
directed by the robot may not be reflected with tracking 
error. Thus, more metrics are required to further validate 
the tool tracking function of the method. The proposed 
method was further validated based on the error and 
connectivity indices defined in Eq. [18]. As presented in 
Table 2, the connectivity index indicated that over 74% 
of the actual guidewire pixels in the segmented frames 
were linked, while the highest mean connectivity value 
was obtained in the 9th sequence. Likewise, the proposed 
method showed that more than 60% of the segmented 
guidewire areas can be tracked with respect to the reference 
frames. Thus, both images were understood to have minimal 
mean differences along the ridges and edges of the tool. 
Details of the tracking performances presented in Table 2  
show that the proposed method could track the guidewire 
pixels in each angiogram frame (Fi) with respect to pixels 
that are at the corresponding locations of the ground-truth 
image (G). For accessibility, the motion details are included 
in Figure 4B. After analysis of the segmentation and tracking 
results, it could be observed that the proposed method was 
able to classify the majority of the pixels in the angiogram 
and properly segment the pixels belonging to the guidewire 
or cannulated vessel away from the background pixels.

[18]
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Figure 4(LB and RB) shows that the proposed method 
presented high false-positive rate responses for pixels that 
had very close intensity values to the background image. 
This led to a low tracking area index in the segmentation 
results. Also, this reflected low positive predictive rates. 
Lower connectivity of guidewire pixels was observed in 
some frames (Figure 4, LA2, LA3, and RB7); however, the 
tracking was able to detect the tip of the guidewire in most 
cases. Effect of artifacts presenting as noise was observed in 
some cases, as shown in Figure 4 (RB7).

Furthermore, inter-frame motion variables such as 
displacement and orientation of the guidewire were 
computed using Eqs. [14] and [15], respectively, as displayed 
in the top-right corner of the plots in Figure 4 (LB1-7,  
RB1-7). In this section, we have demonstrated that tool 
detection and tracking are two different steps that are 
needed for robotic intravascular catheterization when the 

Table 2 Mean tracking performance 

ID
Tracking Error Connectivity (%) 

(Mean ± Std)
Area (%)

( )iG Fpδ −

 ( )iG Frδ −



1 0.750 0.015 82.422±1.145 62.882

2 1.545 0.041 78.451±0.966 60.720

3 1.305 0.024 76.797±3.697 72.379

4 1.837 0.066 78.135±0.554 70.256

5 2.002 0.045 87.259±0.001 88.146

6 0.407 0.009 86.283±1.001 88.576

7 1.325 0.031 89.395±0.718 70.726

8 1.057 0.014 74.363±0.540 81.516

9 0.603 0.023 88.523±0.677 82.658

10 1.291 0.017 81.298±1.051 65.430

11 1.278 0.020 82.771±0.811 72.262

12 9.855 0.160 82.069±0.788 73.858
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motion control is driven by image-based approaches. 

Comparison with existing methods
An evaluation study was performed to compare the results 
of the proposed method with the results obtained from 9 
existing methods that were developed for segmentation of 
blood vessel and endovascular tools in angiographic images. 
A total of 9 existing methods that have been reported on 
this subject in previous studies were selected, implemented, 
and validated. 

Details of the implementation and validation performed 
for the existing methods are as described in the evaluation 
study. Table 3 presents some details of results for the 12 
sequences. A blood vessel enhancement strategy was 
proposed based on differential evolution optimization of 
Boltzmann univariate to tune Gabor filters (34). Optimal 
values of the single-scale filtering parameters in the study, 
that is filter width, kernel elongation, and orientation 
reported as 12, 2.548, and 45, respectively, were adopted 
to segment guidewire pixels in the 12 sequences during 
our evaluation. Another method employed for evaluation 
was the trainable COSFIRE (combination of shifted filter 
responses) filter which has been proposed for delineation 
of blood vessels in retinal images (32). The Gaussian-based 
method was chosen, as it is versatile with proven capability 
in defining any vessel-like pattern. The vessel points were 
selected in an automatic process with a tuple of Gaussian 
standard deviation (σ) and polar coordinates (ρ) with respect 
to the center of the filter. Values of the parameters used for 

evaluation were σ =4.4 and ϕ =8. The factors α =0.7 and σo 

=30 were constants used to adjust the filter’s configuration. 
A third approach used to evaluate our method was the 
multiscale retinal vessel segmentation which was based 
on the line tracking method (35). The tracking-based 
method starts with a group of pixels derived under an 
intensity selection rule, maps all pixels that are assumed to 
belong to a vessel at different scales, and terminates when 
a cross-sectional profile condition becomes invalid. This 
approach shares some similarities with ours. For instance, 
morphological operations and median filtering are applied 
in the initial stages to restore disconnected vessel lines and 
eliminate noises. 

For the multi-scale tracking done in this present study, 
we used initial and final scales of 3 and 11, respectively, 
along with and a step-size of 2. A constant threshold of 15 
was used while other parameters were adopted as reported 
in another study (35). The general technique proposed for 
segmenting and characterizing blood vessels in Heneghan 
et al. was also used to evaluate this study (36). We adopted 
a publicly available Matlab implementation of this method 
and Coye’s method (37,42). The default parameters 
provided in the studies were adopted.

The methods used for comparison included the single-
scale matched filter response (38). This was combined with 
length filtering for vessel-like segmentation, and involves 
selecting a threshold value that maximizes the local entropy. 
Also, the approach proposed by Kang et al. introduces 
a segmentation procedure based on a similarity degree 

Table 3 Performance evaluation of the proposed and existing segmentation methods 

Id Reference ACC Mean-ACC SENN SPE NPV (%) FDV (%) DSC PPV MCC

1 Proposed methods 0.995 0.758 0.520 0.997 0.998 0.585 0.454 0.415 0.458

2 Cervantes-Sanchez et al. (34) 0.941 0.693 0.441 0.944 0.997 0.967 0.061 0.033 0.106

3 Azzopardi et al. (32) 0.985 0.495 0.001 0.989 0.996 1.000 0.001 0.000 -0.006

4 Vlachos & Dermatas (35) 0.991 0.542 0.090 0.995 0.996 0.829 0.112 0.171 0.117

5 Heneghan et al. (36) 0.958 0.645 0.329 0.961 0.997 0.964 0.063 0.036 0.094

6 Coye (37) 0.896 0.681 0.463 0.898 0.997 0.976 0.046 0.024 0.085

7 Chanwimaluang & Fan (38) 0.949 0.664 0.377 0.952 0.997 0.963 0.065 0.037 0.103

8 Kang et al. (39) 0.945 0.618 0.288 0.948 0.976 0.003 0.044 0.024 0.068

9 Nguyen et al. (40) 0.937 0.641 0.343 0.940 0.997 0.972 0.050 0.028 0.081

10 Qian et al. (41) 0.790 0.658 0.524 0.791 0.997 0.989 0.022 0.011 0.051

ACC, accuracy; Mean-ACC, mean accuracy; SEN, sensitivity; SPE, specificity; NPV, negative predictive value; FDV, false discovery value; 
DSC, dice similarity score; PPV, positive predictive value; MCC, Matthews correlation coefficient.
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between pixels of the gray-scale detection response (39). 
Furthermore, the approach of Nguyen et al., in which vessel 
pixels are segmented using multiline detector response with 
a fixed threshold, was also employed for evaluation (40).  
A threshold value of 0.56 was selected to maximize the 
classification accuracy using a training set. The detector 
scale was set as 15 and the step-size was set as 2. Lastly, in 
the method by Qian et al., multiscale response of a top-hat 
operator was used to enhance vessel-like structures (41). 
A total of 3 different morphological operators with disk of 
sizes 1, 3, and 7 were applied. The methods were developed 
with capabilities to delineate the cardiac and retinal 
vascular structures. For fair comparison with our method, 
the existing segmentation methods were implemented in 
a Matlab environment with the same dataset used in this 
study (1). 

Discussion

In the comparative study, mean accuracy (mean-ACC), 
dice similarity score (DSC), and positive predictive value 
(PPV) were metrics added for clarity on the performance 
evaluation (32,43). It was observed that the proposed 
method had a better performance over all other existing 
methods except in terms of FDV. However, the multiscale 
top-hat approach by Qian et al. conversely provided the 
highest incorrect detection rate of the pixels which was 
reflected in its sensitivity (41). On another hand, most of 
the other classification methods presented moderately high 
sensitivity and very high specificity, and this has been at the 
cost of the significantly high number of background pixels 
over the guidewire pixels. Moreover, this caused all the 
methods to yield lower DSC, PPV, and MCC values with 
the ground-truth. The results obtained from each of the 
methods are plotted in Figure 4 and were further analyzed 
to validate the performance by applying each of the 
existing segmentation methods to the 12 trials. The cases 
of the specific frames in the last sequence are presented 
in the figure. These include the results obtained from the 
proposed and existing methods chosen for this evaluation 
study. The original angiograms and actual ground-truth 
frames of the respective images are displayed in successive 
rows for ease of visualization. The segmentation results 
are plotted as the contrast between the guidewire and 
background pixels. It can be seen that the segmentation 
results obtained by the newly proposed method were better 
than those of the existing methods. For instance, detection 
and delineation of the guidewire that was achieved with the 

previous methods were seriously affected by occurrence of 
irregular edges, noise speckles, and holes. Also, the methods 
demonstrated low connectivity of the vessel-like structure 
(i.e., guidewire) in the angiograms. However, the methods 
of Qian et al. used repairing processes to fill holes in the 
disconnected pixels in the guidewire (41). Nevertheless, the 
methods could not accurately delineate the guidewire pixels 
from the background pixels for appropriate segmentation 
in all cases. This is a comparable challenge to those 
encountered through the methods of Heneghan et al. and 
Nguyen et al. but at lower degrees (36,40).

For an in-depth comparison, the 4 binary indicators 
were determined for statistical hypothesis testing while 
both type I and type II errors were analyzed for the 
segmentation results, as presented in the first row of 
Figure 5. Details of the mean values obtained for 4 binary 
indicators based on the 12 trials are presented in Table 4. 
It is possible to perform additional comparative analysis 
of the proposed and existing methods. For instance, true-
positive and false-negative values of the methods were 
obtained to illustrate their segmentation abilities. The 
data in Table 4 show that the proposed method yielded 
the highest hit rates (i.e., TP and TN values) along with 
lowest type I (FP) and type II (FN) errors. Consequently, 
this enabled the method to yield the highest TP and 
FN values, which in turn conferred the highest AUC. 
The method in Azzopardi et al. provided the lowest 
AUC which can be attributed to high type I and type 
II (FN) errors from the null hypothesis evaluation (32).  
The receiver operating characteristic (ROC) curves of 
these methods were plotted for the first frame in the 
sequence. As shown in Figure 6, the proposed method had 
the widest AUC. Despite class imbalance in the dataset, 
analysis of the case study shows that the proposed method 
can rank a randomly chosen guidewire pixel more positively 
than a randomly chosen background pixel at an estimation 
probability of 0.285. On the contrary, the Gaussian-based 
method in Azzopardi et al. had relatively low incidence 
of true-positive and false-positive rates which affected 
the accuracy, sensitivity, and AUC of the segmentation  
method (32). Hence, these are essential reasons for the 
high FP and FN rates in the edges of image pixels which 
constituted a reduced PPV for the methods in Table 3.

Furthermore, the proposed model was also evaluated 
with datasets  obta ined from both robot-ass i s ted 
intervention and one with a conventional intravascular 
catheterization. Both were in vivo angiograms obtained in 
rabbits. In this case, guidewire navigation was performed 
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manually without using the master–slave robotic system. 
Sequences of the X-ray frames obtained were saved and 
processed as explained in the Methods Section. The 
proposed model was employed without any modification 
and the results obtained are presented in Figure 7. 

This includes eight image frames that were arbitrarily 
chosen at random incremental intervals: frames #55, 
#155, #255, #455, #505, #805, #905, and #1055. The 
original angiograms are presented in Figure 7A, while 
the guidewire pixels segmented from the angiograms 
are displayed as the middle panel (Figure 7B), and the 
guidewire pixel tracking results obtained with the method 
are presented in the right panel of Figure 7C. We can 
conclude that the robotic system does not negatively affect 
tool catheterization under X-ray. Rather, it saved the 
interventionists from exposure to radiation. 

Further studies are needed to validate how significantly 
the robotic system can reduce radiation exposure, and if it 
could reduce intravascular catheterization procedural time 
during cardiac interventions. As the procedure follows a 
general convention in which the segmentation models are 
used to classify the pixels as guidewire or background, we 
conducted intra-observer model variability analysis. This 
was done by comparing pixels in the ground-truth with 
the model results. The reliability and variance measures 
of the segmentation models were defined as a function of 
the binary indicators, as presented in Table 3. As shown 
in Figure 8, the proposed method yielded an intra-class 
correlation coefficient with model agreement of 45.18% and 
±0.10 variability. The values represent average reliability 
and consistency of the models across all frames in the 12 
angiogram sequences. The logic of intra-class measurement 

Table 4 Performance evaluation based on binary indicators*

Id Reference TP FP TN FN TPR FPR AUC (Mean ± Std)

1 Proposed method 3,935.199 5,376.700 1,567,637.400 3,013.701 0.566 0.003 0.753±0.074

2 Cervantes-Sanchez et al. (34) 3,025.395 88,666.503 1,484,347.596 3,923.505 0.435 0.056 0.687±0.040

3 Azzopardi et al. (32) 7.011 16,911.318 1,556,102.782 6,941.889 0.001 0.011 0.490±0.013

4 Vlachos & Dermatas (35) 667.979 7,972.113 1,565,041.987 6,280.921 0.096 0.005 0.537±0.029

5 Heneghan et al. (36) 2,299.911 62,125.713 1,510,888.387 4,648.989 0.331 0.039 0.639±0.020

6 Coye (37) 3,175.785 159,974.397 1,413,039.703 3,773.115 0.457 0.102 0.675±0.033

7 Chanwimaluang & Fan (38) 2,691.295 75,728.124 1,497,285.975 4,257.605 0.387 0.048 0.659±0.057

8 Kang et al. (39) 2,007.940 81,823.589 1,491,190.510 4,940.960 0.289 0.052 0.613±0.037

9 Nguyen et al. (40) 2,394.800 94,799.921 1,478,214.178 4,554.101 0.345 0.060 0.636±0.037

10 Qian et al. (41) 3,661.714 328,788.315 1,244,225.785 3,287.186 0.527 0.209 0.653±0.033

*, Reported as the mean values of the 12 catheterization trials. The angiograms were resized to 1,207×1,309 pixels after applying each 
segmentation method for unbiased evaluation. The 4 binary indicators were computed from the 1579963 pixels in each resized angiogram. 
TP, true positive; FP, false positive; TN, true negative; FN, false negative; TPR, true positive rate; FPR, false positive rate; AUC, area under 
the curve.
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catheterization trial. 
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Figure 7 Evaluation of the proposed segmentation and tracking methods with an in vivo angiogram dataset obtained during conventional 
catheterization. (A) Ground-truth angiogram, (B) segmentation result, (C) guidewire tracking with the tracked pixels marked in cyan color. 
Details of the tool displacement and orientation were computed for the inter-frame motion as overlaid in each plot. The time laps provided 
for every consecutive frame show segmentation time was slightly longer in each successive frame.

Figure 8 Intraobserver model variability analysis between ground-truth and segmentation results.
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for correlation analysis is that the reliability of a good 
model should feature relatively little cumulative variance 
between observed and actual models, irrespective of the 
sources. This expresses the difficulty of excluding variability 
from non-uniform illumination received by multiple frames 
in angiogram sequences, and following a unique labelling 
process for the independent frames. The results of Figure 7 
could be interpreted that the proposed segmentation model 
was able to characterize frame pixels in the segmented 
images close to the ground-truth data than other existing 
models. Nevertheless, sources of variance between the 
ground-truth and results from the segmentation models 
could be attributed to performance of the models and 
presence of random or unfiltered image artifacts. Similarly, 
analysis of the computation time required for the 
segmentation procedure was also considered to evaluate the 
methods. 

For this purpose, the average execution time taken to 
segment guidewire pixels in all the angiograms was obtained 
with the time function in Matlab. As presented in Table 5,  
the proposed method took an average execution time of  
1 second to segment guidewire pixels per angiogram. The 
multiscale response of the top-hat operator occurred as 
the fastest approach, followed by the methods in Coye 
and Chanwimaluang, and Fan, with lower execution times 
(37,38,41). One reason our proposed approach had a longer 
execution time could be due to it employing multiscale 
operations during frame preprocessing and vesselness 
detection steps. Nonetheless, the proposed method was 
faster than the other approaches. These findings suggest 
that the proposed method has good potential and can be 

used for segmenting blood vessels and tools with similar 
structures, including guidewires and catheters, while 
providing real-time motion visualization and intraoperative 
tracking during robotic catheterization. 

Conclusions

Cardiovascular diseases are a major cause of death 
worldwide. Recently, robotic catheter systems have been 
being developed for intravascular interventions; however, 
this modern approach has required more catheterization 
time due to several challenges. For instance, X-ray 
angiograms produced under nonuniform illumination, 
tool-vessel structural similarities, and lack of distal data 
sensing make robotic intravascular catheterization a difficult 
and potentially unsafe method for intravascular PCIs. 
Additionally, surgeons are still exposed to operational 
hazards during these procedures. Thus, in this study, 
a model-based approach was proposed for automatic 
segmentation and tracking of guidewire pixels in X-ray 
angiograms acquired during robotic intravascular 
catheterization for cardiovascular interventions. The 
proposed segmentation method was based on multiscale 
enhancement filtering of preprocessed X-ray frames 
in the sequences. The angiograms were refined with 
morphological operations and filters for pixel smoothing 
and vesselness measurement, while minima and maxima 
extrema were obtained to classify the pixels as valleys, 
representing part of the guidewire or ridges to denote the 
background. Then, morphological dilation was applied with 
structuring elements to connect and track the guidewire 
pixels in segmented images. Validation of the proposed 
method on an in vivo X-ray dataset acquired during 12 trials 
showed a segmentation accuracy of 0.995±0.001, a tracking 
displacement error of 1.938±2.429, and tracking orientation 
error of 0.039±0.040. 

Furthermore, comparative studies were performed 
to evaluate the proposed approach with 9 existing vessel 
segmentation methods. The newly developed method 
showed the best performance in terms of the numerous 
metrics but had a relatively low FDR. Results from the 
comparative study showed some advantages of the proposed 
approach over the other methods. In addition, the proposed 
method could enhance robotic catheterization for faster 
interventions while providing surgeons with better tracking 
and visualization systems. Currently, the proposed method 
only achieved an average processing time of 1.048±0.066 
seconds per image, which corresponds to about 1 FPS. 

Table 5 Comparison based on average execution time

Id Reference Execution time (s)

1 Proposed Methods 1.048±0.066

2 Cervantes-Sanchez et al. (34) 13.562±0.647

3 Azzopardi et al. (32) 25.572±1.168

4 Vlachos & Dermatas (35) 23.410±0.958

5 Heneghan et al. (36) 3.587±0.161

6 Coye (37) 0.666±0.084

7 Chanwimaluang & Fan (38) 0.398±0.055

8 Kang et al. (39) 1.206±0.107

9 Nguyen et al. (40) 7.952 ±0.331

10 Qian et al. (41) 0.092±0.051
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However, the frame rate of our CBCT machine operated at 
an average of 10 frames per second. Thus, the method needs 
to be optimized to enable more accurate segmentation and 
real-time tracking. 

In the future, methods that use deep convolutional neural 
networks shall be examined for improved performance. 
Furthermore, the in vivo study only included guidewire 
motions in simple vessels of rabbits, which are smaller 
animals. More studies using large animals such as pigs or 
monkeys are predicted to assist further validation of the 
proposed method. Also, adoption of the segmentation 
and tracking method to an online robotic catheter system 
may achieve increased cybernetic and autonomous tool 
manipulation during robotic intravascular catheterization.
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