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Introduction

Lung cancer is the most malignant tumor, with the highest 
morbidity and mortality rates worldwide. The 5-year 
survival rate of patients with stage IV lung cancer is less 
than 5%. Lung cancer is divided into non-small cell lung 

cancer (NSCLC) and small cell carcinoma, and lung 
adenocarcinoma and lung squamous cell carcinoma are 
common types of NSCLC (1,2). Although considerable 
progress has been made over the past 2 decades in the 
study of NSCLC, the overall cure rate and survival rate 
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remain low (3). The emergence of targeted therapy has 
substantially increased the survival rate of NSCLC patients. 
Mutations of essential pathogenic genes should be identified 
before targeted therapy. The epidermal growth factor 
receptor (EGFR) and Kirsten rat sarcoma (KRAS) genes are 
key genes in NSCLC (4,5).

Biopsy by endoscopy or puncture typically provides 
criteria for detecting EGFR and KRAS mutations. However, 
there are several limitations in the application of these 
methods: (I) patients with a lower Karnofsky Performance 
Score (KPS) are less likely to undergo the invasive 
procedure repeatedly; (II) not all tumors of all sizes or 
locations are suitable for biopsy; (III) biopsy increases the 
risk of cancer metastasis; (IV) repeated biopsies for the 
monitoring of genetic mutations throughout the treatment 
process are less practical. Hence, exploring non-invasive 
and easy-to-use methods for predicting EGFR and KRAS 
mutations is necessary.

Researchers have used CT images in recent years to 
predict gene mutations, mostly by traditional radiomics, 
machine learning, or statistical methods. Most researchers 
use radiomics to predict gene mutations (6-11). Digumarthy 
et al. (6) explored whether CT could be used to predict 
EGFR mutations in NSCLC. The radiomics features of 
CT images from 93 NSCLC patients were extracted, 
followed by quantitative and Pearson correlation 
analyses. The experimental results demonstrated that 
the combination of radiomics and clinical features could 
increase the performance of predicting EGFR mutations. 
Other studies (7,8) have also explored the associations of 
imaging genomics in NSCLC, demonstrating significant 
associations between imaging features and gene mutations, 
as well as evaluating the feasibility of predicting EGFR/
KRAS mutations from CT images. Liu et al. (9) studied 
the correlations between radiomics features and EGFR 
mutations in lung adenocarcinoma. They concluded that the 
combination of radiomics features and clinical information 
could effectively improve EGFR mutation prediction. 
Rios Velazquez et al. (10) studied the associations between 
imaging phenotypes and key gene mutations in lung cancer. 
They suggested that the combination of imaging features 
with clinical models could increase the accuracy (ACC) 
of prediction. The highest-performing features could 
distinguish between EGFR-mutant tumors and KRAS-
mutant tumors. Park et al. (11) studied the relationships 
between imaging characteristics and EGFR mutations, 
KRAS mutations, and ALK recombination in stage IIIB-
IV lung cancer. Several other studies (12-19) have also 

demonstrated the feasibility of predicting genetic mutations 
from imaging characteristics.

Studies have also used machine learning or statistics to 
predict genetic mutations from imaging features (20,21). 
Gevaert et al. (20) used machine learning to predict 
key EGFR and KRAS mutations by extracting semantic 
information, which showed that semantic information and 
EGFR mutations were statistically significant, whereas KRAS 
mutations and semantic information were not statistically 
significant. Li et al. (21) extracted radiomics features and 
established a logistic regression model by using a cross-
validation strategy to predict EGFR mutations in NSCLC.

Although the above radiomics, machine learning, and 
statistical methods have successfully predicted genetic 
mutations, they require complicated and strict procedures. 
They are time-consuming and need full guidance from an 
experienced imaging physician, from detection to segmentation 
to feature extraction and feature selection. Furthermore, 
radiomics features are sensitive to segmentation results 
obtained by manual segmentation and are not repeatable. The 
extraction of semantic information in a small number of studies 
requires experienced physicians, and the selection of semantic 
characteristics is difficult even in the medical field.

In recent years, deep learning has realized substantial 
success in the artificial intelligence field due to powerful 
feature extraction and classification capabilities, enabling 
users to avoid tedious manual feature extraction (22-25). 
Deep learning methods have also been gradually developed 
in the study of image prediction of gene mutations. Wang  
et al. (26) proposed CT images to train deep learning models 
and predict EGFR mutations in lung adenocarcinoma. 
First, they collected CT images of 844 patients with lung 
adenocarcinoma. Then, they constructed end-to-end deep 
learning models for the prediction of EGFR mutations from 
CT images. This approach is a non-invasive and easy-to-
implement deep learning method. Other studies (27-29)  
also show that deep learning models can identify gene 
mutations in lung cancer. 

A l t h o u g h  t h e s e  d e e p  l e a r n i n g  m e t h o d s  h a v e 
demonstrated higher classification performance than 
traditional radiomics or machine learning methods, they did 
not demonstrate similar performances for EGFR and KRAS 
mutation-based detection and for the ImageNet and Cifar10 
datasets. The main reasons are as follows: (I) the deep 
learning models with superior performance rely on large-
scale datasets; however, medical image datasets are often 
difficult to obtain on a large-scale (30,31); (II) extensive 
changes occur in the morphology, texture, and visual 
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similarity of lung nodules among gene mutation types, as 
shown in Figure 1. From Figure 1, we can conclude that it is 
difficult for the typical convolutional neural network (CNN) 
to conduct feature extraction tasks for all types of nodules.

Many studies have been proposed to address the 
limitations of small medical datasets (32-34). Firstly, image 
representation ability that has been learned from larger-scale 
natural images can be transferred to medical small-sample 
images through transfer learning (32-34). Esteva et al. (32) 
pre-trained the GoogleNet Inception v3 CNN on Large-
Scale ImageNet to classify skin cancer. Secondly, multiple 
slices can be extracted from 3D nodules, and 2D CNN can 
be extended to slice-by-slice medical images (35,36). Setio  
et  al .  (36) suggested decomposing the multi-view 
architecture from 3D nodules and training 2D CNN in each 
view. Thirdly, studies have used improved deep learning 
models to solve small-sample problems with medical images 
(37,38). Kang et al. (37) used the inception-resnet network 
for benign and malignant lung nodule classification. The 
experimental results demonstrated that the multiscale 
convolution kernel and the residual structure of inception-
resnet were highly useful for various lung nodule feature 
extraction tasks. Guan et al. (38) proposed a residual 
attention learning network for the multi-classification of 
chest X-ray images. The method introduced an attention 
mechanism into the CNN, which enabled CNN to focus 

on the lesion area related to the prediction task, thereby 
substantially improving the CNN’s feature extraction 
performance. The experimental results demonstrate the 
advantages of using the attention mechanism in the multi-
classification tasks of chest X-ray images. Fourthly, studies 
have used multi-task learning to overcome the small-
sample problem of medical images (39). Additionally, 
patient medical record information has been added into 
deep learning models (40). In our previous work (41),  
domain knowledge was incorporated into our deep model, 
and the classification ACC on small samples was increased.

This paper proposes a multi-channel and multi-task deep 
learning (MMDL) model for predicting EGFR and KRAS 
mutation statuses simultaneously from CT images and 
patient personal information. First, we decomposed each 
3D lung nodule cube into 9 fixed views. Then, we built 
an inception-attention-resnet model for extracting deep 
features from the 9 views. Finally, we combined 9 inception-
attention-resnet models for multi-task learning to predict 
EGFR and KRAS mutations simultaneously. Furthermore, 
patient personal information was incorporated into the 
inception-attention-resnet model to include more prior 
knowledge of the mutations. An adaptive weighting scheme 
was adopted in the training process so that the proposed 
MMDL model could be trained in an end-to-end manner. 

The proposed MMDL model’s main contributions are as 

EGFR mutation EGFR wide type

KRAS mutation KRAS wide type

Figure 1 Examples of CT images of EGFR mutation/wild type and KRAS mutation/wild type. EGFR, epidermal growth factor receptor; 
KRAS, Kirsten rat sarcoma.
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Figure 2 The framework of our proposed multi-channel and multi-task deep learning (MMDL) model.

follows: (I) to the best of our knowledge, this is one of the 
first studies to use deep learning models for simultaneous 
multi-gene mutation prediction; (II) the MMDL models can 
characterize the features of nodules more comprehensively 
and enable a single prediction task to benefit from multi-
task learning, which increases the ACC of prediction. 
Moreover, the complete model can be trained in an end-
to-end approach, thereby avoiding manual intervention; 
(III) the proposed model can incorporate multiple aspects 
of patient personal information related to the predictive 
task into the model’s learning process; (IV) the proposed 
inception-attention-resnet model can efficiently extract 
features from various types of lung nodules.

Methods

The proposed model consisted of 3 steps: (I) obtaining 9 2D 
nodule views from 3D cubes with nodules and extracting 
regions of interest (ROIs) from 2D nodule views; (II) 
Constructing pre-trained inception-attention-resnet models, 
which use the extracted 2D nodule ROIs and patient 

personal information as inputs for multi-task learning; (III) 
Combining 9 pre-trained inception-attention-resnet models 
for multi-task learning with adaptive weighted decision-
level fusion. The overall flow of the algorithm is illustrated 
in Figure 2. Figure 2A shows the extraction of 9 view slices; 
Figure 2B is the multi-channel feature extraction; Figure 
2C shows details of pre-trained inception-attention-resnet; 
Figure 2D is the multi-channel fusion process.

Obtaining 9 2D nodule slices and extracting ROIs

The basic strategy of multi-channel learning is to adopt 
the consistency and differentiation from various channels 
to achieve better performance. Since CT images are of 
variable spatial resolutions, we resampled them using spline 
interpolation to a uniform size of 1.0×1.0×1.0 mm3. First, 
2D slices were stacked into 3D by the linear interpolation 
method. Then, 2 radiologists with more than 8 years 
of experience at the co-operative hospital labeled the 
nodule’s center. To ensure that for the 3D cube, all nodules  
(≤30 mm) were fully visible in the 2D view and sufficient 
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contextual information was included, we considered the 
nodule center that was specified by the radiologists as the 
center and extracted a cube of size 64×64×64, which could 
contain the nodule completely (34). It is the 3D cube-
containing nodules that we extracted. Although 3D deep 
learning models are already available for medical images 
(35,36), our model uses 2D deep learning multi-channel 
models for each 3D cube, providing more training samples.

We extracted 9 2D slices from 3 planes (transverse, 
sagittal, and axial) and 6 diagonal planes of the 3D cube 
containing lung nodules, which were used to characterize 
the nodule information fully. Each diagonal plane was 
obtained by cutting the 2 opposite faces of the cube 
diagonally, which contained 2 opposite edges and 4 vertices 
(as illustrated in Figure 2A). Therefore, we obtained 9 slices 
for each nodule, different slices entered different channels, 
and the channels could coordinate and promote each other.

Data augmentation techniques enhance the dataset, 
which can alleviate the overfitting of deep learning 
models. Augmented data were generated for each slice by 
conducting image translation, rotation, and vertical and 
horizontal flipping (40). The rotation angle was selected 
from 90°, 180°, 270°, and the translation was horizontal 
or vertical. All images were then uniformly adjusted to 
a size of 299×299 to accommodate the following model 
input. We standardized the data before passing it to the 
deep neural network, using Z-score standardization (42). 
After standardization, the data were adjusted to a normal 
distribution that conformed to the average of 0, and the 
variance was 1. Normalization is performed to return 
the increasingly biased distribution to the standardized 
distribution before activating the function.

Deep learning model

The inception-resnet-v2 model (Figure 3) (43) consists of a 
steam module, 3 reduction modules, and 3 inception-resnet 

modules. The steam module is used to preprocess the data 
before it enters the inception module and performs multiple 
convolutions and pooling operations. The reduction 
module plays a role in pooling and adopts a parallel 
structure to prevent the bottleneck problem. The inception-
resnet module is the integration of the inception module 
and the resnet module, which can conduct multiple types 
of convolution operations (1×1, 3×3, or 7×7 convolution 
kernels) or pooling operations on the input image and can 
stitch all outputs into a deep feature map. Since convolution 
kernels that differ in terms of size also differ in terms of 
receptive field size, different types of information from 
the input image can be obtained. Furthermore, parallel 
convolution and stitching for various kinds of output 
feature maps will enable the model to achieve better 
image representation. The residual module solves gradient 
disappearance during training and avoids the performance 
degradation caused by the deep network. 

Our inception-attention-resnet module (Figure 2C) 
adopts the above 3 types of inception-resnet modules as the 
basic units, where the design of the attention mechanism 
uses an hourglass attention structure similar to that in (44), 
as illustrated in Figure 4. Each inception-attention-resnet 
module is composed of 2 branches: a mask branch and a 
trunk branch. The trunk branch is composed of multiple 
stacked sequential inception-resnet modules, which are used 
for feature extraction. The mask attention branch adopts 
a full convolution structure similar to the bottom-up and 
top-down structures of the fully convolutional network  
(FCN) (45). First, for input, the bottom-up structure is used 
to conduct max pooling multiple times to quickly enlarge 
the receptive field after passing through multiple inception-
resnet module units. The resulting output is fed to the 
top-down structure (which is symmetrical to the bottom-
up structure). Multiple linear differences are calculated 
after the residual units to enlarge the input feature map, 
where the number of linear interpolations is the same as 

Figure 3 Inception-resnet-v2 model.
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Figure 4 Architecture of the attention module.

the number of max pooling, thereby ensuring that the 
inputs are the same size as the output. Then, 2 consecutive 
1×1 convolutional layers are connected, and a sigmoid 
layer is connected for normalizing the output to [0,1]. 
Simultaneously, we added the skip connections between 
the bottom-up and top-down structures to capture various 
information proportions. Therefore, the mask attention 
branch will act as a feature selector to generate attention 
perception, thereby enhancing the useful features and 
suppressing the noise of the features that are generated by 
the trunk branch to produce a more discriminative feature 
representation. 

The attention module was designed using an hourglass 
attention structure, as shown in Figure 4. Assume that the 
input image is x and the feature map that is generated by the 
steam module is F, which will be fed into the trunk branch 
and the mask attention branch, respectively. Suppose the 
feature map generated by the trunk branch is Ti,c(x,φ), where 
φ is the trunk branch’s parameter. The mask attention 
branch obtains the mask Mi,c(x,θ) with the same size as the 
trunk output, and θ is a parameter of the mask attention 
branch. By normalizing Mi,c(x,θ) using the sigmoid function, 
the normalized result is obtained:

( ) ( )( ),
,

1,θ
1 ,θi c

i c

S x
exp M x

=
+ −

	

[1]

Since the mask attention branch can generate an attention 
perception function (38), Si,c(x) can be used to add soft weight 
to the feature map Ti,c(x) the trunk branch generates that. 
Therefore, the weighted output feature map is:

( ) ( ) ( ), , ,,φ ,θi c i c i cV x T x S x= 	 [2]

Where i represents the position of the i-th pixel on the 
c-th channel of the feature map, and { }1,2,c C∈ …  is the c-th 
channel of the feature map, in which C represents the total 
number of channels for the generated feature map. Mask 
attention branches act as feature selectors during forward-
propagation and as filters for gradient updates during 
backpropagation to conduct parameter updates with the 
trunk branch. The mask’s gradient for the input feature is: 

( ) ( ) ( ) ( ), , ,
,

S x T x T x
S x

θ ϕ ϕ
θ

ϕ ϕ
∂ ∂

=
∂ ∂

	

[3]

Where θ is the parameter of the mask branch and φ is the 
parameter of the trunk branch.

To prevent performance degradation that is caused by 
applying soft weights to the trunk features Ti,c(x,φ), the 
output feature maps Oi,c(x,φ) and Ti,c(x,φ) are weighted for 
element-wise addition. Therefore, the final output of the 
attention module is:

( ) ( ) ( ) ( ) ( )( ), , , , ,= + ,φ = ,φ 1+ ,θi c i c i c i c i cA x V x T x T x S x 	 [4]

Our inception-attention-resnet module (as shown in 
Figure 5) adopts 3 types of inception-resnet modules as the 
basic units, and various types of attention can be captured 
extensively. As part of the constructed model, 3 attention 
model can simulate the fast bottom-up feed-forward process 
and top-down attention feedback during a single feed-
forward process, thereby enabling our model to be trained 
in an end-to-end approach.
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Figure 5 Inception-attention-resnet module. 

Our proposed inception-resnet-attention model consists 
of a stem module, 3 inception-resnet-attention modules, 2 
reduction modules, an average pooling layer, a dropout (keep 
=0.8), and a fully connected layer. As illustrated in Figure 2C,  
except for the inclusion of 3 inception-resnet-attention 
modules, the remaining module adopts the original 
inception-resnet-v2 structure. 

To avoid overfitting in our deep model, we first pre-
trained the inception-resnet-attention model on the large-
scale public datasets and saved the model weights. Then, 
we transferred the pre-trained model to our medical image 
datasets. The CNN model is commonly pre-trained on 
the ImageNet datasets (46), including approximately  
1.2 million images and 1,000 categories. However, it is not 
easy to obtain the pre-trained weights on ImageNet for a 
model that has been built from scratch because training on 
such a large dataset requires powerful equipment, including 

many GPUs. Since our task is a binary classification task, 
we chose a smaller dataset, cat vs. dog (https://www.kaggle.
com/c/dogs-vs-cats/data), from the Kaggle competition to 
classify cats and dogs. The dataset contains a training set 
and a test set, where the training set contains 25,000 images,  
with cats and dogs each constituting half, and the test set 
contains 12,500 unlabelled pictures. The inception-resnet-
attention model was pre-trained on the cat vs. dog dataset. 
The network uses end-to-end training to minimize the 
cross-entropy loss function. A mini-batch random gradient 
descent algorithm with a batch size of 16 is used as an 
optimizer. The maximum number of epochs is set to 100, 
and the learning rate is set to 0.001.

Furthermore, to prevent overfitting of the network, 
we adopted an early stopping strategy during the training 
process. First, we randomly selected 10% of the images 
from the training set as the validation set. If the network 
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error on the training set continued to drop during training, 
but the error on the validation set stopped dropping more 
than 5 times, we terminated the training process early, 
even before the maximum number of epochs was reached. 
We then saved the weights of the convolution and pooling 
layers of the pre-trained network (except the fully connected 
layer) and used them to initialize the network’s convolution 
and pooling layers for subsequent construction. 

To utilize the inception-resnet-attention model to 
predict gene mutations, we removed its last fully connected 
layer and added 2 fully connected (FC) layers to the 
network (as illustrated in Figure 2C). Each branch includes 
3 FC layers: FC256 (256 neurons), FC128 (128 neurons), 
and FC2 (2 neurons). We added patient information factors 
(age, gender, and smoking status) to each branch’s FC256 
layer. Finally, the last FC layer (FC2) of the 2 branches is 
used to predict EGFR and KRAS mutations. The weights 
of these 3 fully connected layers are initialized randomly, 
and the activation function of the last layer uses the sigmoid 
function. First, only the newly added fully connected layers 
are adjusted (FC256, FC128, and FC) in the network, 
and then all layers are adjusted. There are 2 reasons: (I) 
avoid overfitting due to small amounts of data; (II) features 
of the deep network’s first layers contain more general 
characteristics (e.g., edge information). Our prediction 
involved multi-tasks: the last 2 FC2 layers predict the 
mutation probabilities of EGFR and KRAS. Although multi-
tasks increase the computational burden of the network, 
it can realize the objective of simultaneously performing 
multiple tasks.

Since our CT image was grey and the pre-trained 
inception-resnet-attention network takes 3 channels as input 
for colour images, we inserted a 3×3 kernel convolution layer 
after the input image to convert the input monochrome image 
into a 3-channel image that is most suitable for the network.

Multi-model decision-level fusion

The basic strategy of multi-channel learning is to 
utilize the consistency and differentiation from multiple 
channels to achieve higher performance (see Figure 2D). 
For the j-inception-resnet-attention model, { } 1

φ n
i i

X
=

=  
represents the training set and Xi represents the i-th 
subject. The EGFR mutation class labels are denoted as 

{ } ( )
1

1, 2,
ne e

i i
y y e E

=
= = …  and the KRAS mutation class labels 

as { } ( )
1

1, 2,
nk k

i i
Z z k K

=
= = … . E and K are the numbers of 

EGFR and KRAS mutation categories, respectively. The 
2 branches of the fully connected layer of each inception-

resnet-attention model conduct the EGFR and KRAS 
mutation prediction tasks (see Figure 2D).

We defined the outputs of the first and second branches 
as A and B, respectively, which can be expressed as follows:

( )1 1 1
ij j ij jO f W X b= +

	
[5]

( )2 2 2
ij j ij jO f W X b= +

	
[6]

Where, respectively, 1
jW  and 1

jb  represent the weight and 
bias of the j-th inception-resnet-attention model in the first 
task, and 2 jW  and 2

jb  represent the weight and bias of the j-th 
inception-resnet-attention model in the second task. Note 
that the 2 tasks share only the convolution layers’ weights of 
the inception-resnet-attention, while the weights of the fully 
connected layer are non-shared; thus, 1

jW  and 2 jW  are not 
equal. ( ).f  represents the sigmoid activation function. We 
combined 9 inception-resnet-attention models for multi-
task learning to make the final prediction, as illustrated 
in Figure 2B. Each inception-resnet-attention model has 
2 neuron output layers in 1 branch of the FC2 layer that 
is connected to the same neuron classification layer. This 
layer is the final classification layer, namely, FC_last, which 
contains 2 sigmoid neurons. The 2 neurons’ outputs, 1

jP  and 
2
jP , of FC_last are predictions that are made by the MMDL 

model and can be expressed by the following formula:

9 2
1 1 1

1
1 1

j jm jm
j m

P f U O
= =

 
=   

 
∑∑

	
[7]

9 2
2 2 2

1
1 1

j jm jm
j m

P f U O
= =

 
=   

 
∑∑

	
[8]

Where 1 : 1, 2,3 ,9jmU k = … and { }1,2m∈  is a set of weights 
between the j-th inception-resnet-attention model’s 
output layer and the first neuron in the FC_last layer. The 
parameter m represents the m-th neuron in the output 
layers of one of the branches of each inception-resnet-
attention model. The sum of m is the weighted sum of each 
branch output layer. The cumulative sum of j represents 
the weighted sum of the outputs of one branch of the 9 
inception-resnet-attention models. 2

jmU  is defined similarly 
as 1

jmU . ( ).f  represents the sigmoid activation function. The 
MMDL model objective function is as follows:

{ } ( )( ) { } ( )( )
1 1

1 1 1 1arg min 1 log | ; 1 log | ;
i i

E K
e e k k
i i i i i iW

e X k X

y e P y e X W z k P z k X W
E n K nϕ ϕ= ∈ = ∈

− = = − = =∑ ∑ ∑ ∑
	 [9]
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The first item is the cross-entropy loss of multi-class 
classification, which is used to evaluate the difference 
between the predicted value and the actual value of the 
EGFR mutation of the input sample. The second term is 
used to evaluate whether the input sample belongs to the 
difference between the predicted value and the actual value 
of the KRAS mutation, where { }1   is the indicator function 
such that if { }  is true, then { }1 1= , and ( )1 1  | ;e

i ij ij jP y e X W=  is 
the probability that the network 1

jW  will correctly predict the 
subject Xij as belonging to category e

iy . ( )2 2| ;k
i ij ij jP z k X W=  is 

defined similarly.
T h e  l a b e l  o f  t h e  K R A S  m u t a t i o n  c l a s s  i s 
{ } ( )

1
1, 2,

nk k
i i

Z z k K
=

= = … , and K is the number of KRAS mutation 
classes. In our study, both the EGFR mutant class label 

and the KRAS  mutant class label were used in the 
backpropagation process to update the network weights in 
the convolution layer and learn the most relevant features 
in the FC layer. The proposed network model was used to 
learn a non-linear mapping. { } { }( )1 1

Φ :φ ,
E Ke k

e i
y z

= =
→  from the 

input image to the EGFR spatial mapping of mutant labels 
and KRAS mutant labels. The EGFR and KRAS mutations 
were handled using the same approach. 

Results

Our participating hospital collected the training dataset at 
Shanxi Province, which included 363 patients from 2017 to 
2018 with mutations in EGFR and KRAS. The institutional 
review board approved this retrospective study of the 
participating center (Shanxi Province Cancer Hospital), and 
the need for informed patient consent was waived. There 
were 156 males and 207 females. Their ages ranged from 43 
to 80, with a median age of 62. There were 236 smokers and 
127 non-smokers, 164 cases of EGFR mutations and 199 
wild type cases, and 84 cases of KRAS mutations, and 279 
wild type cases. The validation data were from the public 
dataset, The Cancer Imaging Archive (TCIA; http://www.
cancerimagingarchive.net/). The NSCLC radiogenomics 
data in TCIA consisted of 211 patients, including 162 
patients who satisfied the experimental requirements: CT 
and clinical information integrity. There were 119 males 
and 43 females, among which 137 were smokers, and 25 
were non-smokers. The age range was 43 to 87 years old, 
with a median age of 69 years. There were 25 cases of EGFR 
mutations, 102 wild type cases, and 32 unknown or not 
collected cases. There were 30 cases of KRAS mutations, 94 
wild type cases, and 38 unknown or not collected cases. The 
clinical features of the training dataset and the validation 
dataset are presented in Table 1.

Comparison with traditional methods

First, we compared our model with the traditional 
clinical and radiomics models to predict EGFR and KRAS 
mutations. Most previous studies (7-9) used clinical features 
and radiomics features to predict gene mutations. The 
clinical features mainly included age, gender, smoking 
status, and tumor stage. The radiomics feature extraction 
process was as follows: first, the nodule region was manually 
segmented by a radiologist with more than 8 years of 
experience. The radiomics features were extracted using 
PyRadiomics (http://PyRadiomics.readthedocs.io/en/

Table 1 Patient information in the training dataset and the 
validation dataset

Training dataset 
(n=363)

Validation 
dataset (n=162)

Sex

Male 156 (43%) 119 (73.5%)

Female 207 (57%) 43 (26.5%)

Smoking 

Yes 236 (65%) 137 (84.6%)

No 127 (65%) 25 (15.4%)

Age 

Min 43 43

Max 80 87

Median 62 69

EGFR 

Mutant 164 (45.2%) 25 (15.4%)

Wild type 199 (54.8%) 102 (63.0%)

Unknown or not collected 0 35 (21.6%)

KRAS

Mutant 84 (23.1%) 30 (18.5%)

Wild type 279 (76.9%) 94 (58.0%)

Unknown or not collected 0 (0%) 38 (23.5%)

EGFR & KRAS

Mutant 0 1

Wild type 363 138

EGFR, epidermal growth factor receptor; KRAS, Kirsten rat sarcoma.

http://www.cancerimagingarchive.net/
http://www.cancerimagingarchive.net/
http://PyRadiomics.readthedocs.io/en/latest/
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latest/) (39), and feature selection was conducted. We 
selected 1,108 radiomics features and used recursive feature 
elimination for feature selection. Finally, a random forest 
of 100 trees was constructed in the radiomics and clinical 
models to predict EGFR and KRAS mutations.

We compared our proposed model with the radiomics 
model and the clinical model in the traditional method, and 
we used the area under the curve (AUC), accuracy (ACC), 
sensitivity (SEN), and specificity (SPE) as the primary 
measurements. The results of the training and validation 
datasets are presented in Tables 2,3, respectively. Tables 2,3 
suggest that our model can outperform the traditional 
models in prediction. The AUC value reached 81.29%, and 
the ACC value was 75.06% in the validation dataset when 

EGFR mutations were predicted. The AUC value reached 
74.23%, and the ACC value was 69.64% in the validation 
dataset when KRAS mutations were predicted.

Then, we compared the prediction results of the 
radiomics model with those of the clinical model. The 
radiomics model realized relatively satisfactory performance, 
with 73.84% ACC of the validation data when predicting 
EGFR mutations and 73.61% ACC of the validation data 
when predicting KRAS mutations. The reason is that 
more features were extracted from the original CT images 
in the radiomics model. However, the radiomics models 
require the radiologist to sketch tumor regions, which takes  
more time.

The EGFR mutation prediction performance was 
better than that of KRAS in the 3 models (our deep model, 
the radiomics model, and the clinical model). This may 
be because the EGFR mutation information was better 
reflected in the features of the image, and the KRAS 
mutation information was less well reflected in the image. 
This is why most studies (6-11) on CT image prediction of 
gene mutations in lung cancer focus on predicting EGFR 
mutations. Moreover, according to the literature (20), it 
is impossible to predict KRAS mutations using semantic 
information. Therefore, we did not compare semantic 
information to predict EGFR/KRAS gene mutations with 
our method.

Comparison with deep methods

Although our model adopts inception-resnet-attention as 
the main component, it can be replaced with other popular 
deep learning models. We embedded popular deep learning 

Table 2 Performances of our model, the clinical model, and the 
radiomics model in the training dataset

Methods AUC (%) ACC (%) SEN (%) SPE (%) F1 (%)

EGFR

Clinical model 71.29 69.25 66.72 78.64 77.37

Radiomics model 76.46 77.23 77.96 73.62 79.78

Our model 86.56 79.43 78.27 81.35 82.59

KRAS

Clinical model 72.56 70.67 69.48 72.09 72.55

Radiomics model 79.63 76.59 78.19 77.67 79.76

Our model 78.97 72.25 71.81 74.26 80.94

EGFR, epidermal growth factor receptor; KRAS, Kirsten rat 
sarcoma; AUC, area under the curve; sensitivity; ACC, accuracy; 
SEN, sensitivity; SPE, specificity.

Table 3 Performances of our model, the clinical model, and the radiomics model in the validation dataset

Methods AUC (%) ACC (%) SEN (%) SPE (%) F1 (%)

EGFR

Clinical model 67.50 66.47 62.13 73.57 69.70

Radiomics model 72.63 73.84 73.61 73.94 71.02

Our model 81.29 75.06 73.94 76.69 77.85

KRAS

Clinical model 69.38 67.28 66.52 68.75 72.83

Radiomics model 76.28 73.61 75.42 74.22 78.38

Our model 74.23 69.64 68.72 72.57 77.50

EGFR, epidermal growth factor receptor; KRAS, Kirsten rat sarcoma; AUC, area under the curve; sensitivity; ACC, accuracy; SEN, sensitivity; 
SPE, specificity.

http://PyRadiomics.readthedocs.io/en/latest/
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Figure 6 Receiver operating characteristic (ROC) curves for mutation prediction in the training dataset. (A) EGFR mutation in a single-
task; (B) KRAS mutation in a single-task; (C) EGFR mutation in multi-task; and (D) KRAS mutation in multi-task. EGFR, epidermal growth 
factor receptor; KRAS, Kirsten rat sarcoma.

networks (VGG16, ResNet50, DenseNet121, InceptionV3, 
and Inception-ResNet-v2) into our model for comparison 
and conducted single-task training (prediction of KRAS and 
EGFR separately) and multi-task training (simultaneous 
prediction of KRAS and EGFR). We obtained the receiver 
operating characteristic (ROC) curves (as shown in Figure 6), 
AUC, SEN, and SPE (as presented in Table 4).

The results in Figure 6 suggest that the inception-
resnet-attention model that we selected achieved the best 
performance. When predicting EGFR mutation in single-
task, our model’s AUC value was 8.78% higher than 
VGG16, 11.53% higher than ResNet50, 23.88% higher 
than DenseNet121, 25.65% higher than InceptionV3, 
and 13.56% higher than Inception-ResNet-v2. When 
predicting EGFR mutation in multi-task, our model’s 
AUC value was 10.07% higher than VGG16, 12.14% 
higher than ResNet50, 32.78% higher than DenseNet121, 

25.01% higher than InceptionV3, and 15.29% higher than 
Inception-ResNet-v2. When predicting single-task and 
multi-task EGFR mutations, the AUC values that were 
obtained by our model were 13.56% and 15.29% higher, 
respectively than those of Inception-ResNet-v2. Hence, the 
addition of the attention mechanism significantly improved 
the performance of the model.

Table 4 presents the models’ ACC, SEN, and SPE when 
predicting EGFR and KRAS in a single-task and multi-task. 
Table 4 suggests that in almost all models, the multi-task 
results were better than the single-task results. Taking our 
MMDL model as an example, for single-task prediction of 
EGFR, the ACC was 73.09%, and for multi-task prediction, 
the prediction ACC was 75.06%. The reason is that in deep 
learning in a multi-task prediction, the tasks will promote 
and influence each other, and the results will be better 
than the prediction result of a single task. According to the 
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Table 4 Predictive performances of various deep methods on the validation dataset

VGG16 ResNet50 DenseNet121 InceptionV3 Inception-ResNet-v2 MMDL

EGFR (single-task)

ACC (%) 70.34 67.65 60.59 60.25 67.95 73.09

SEN (%) 65.07 62.32 59.33 57.62 67.02 70.91

SPE (%) 78.44 69.2 62.64 64.68 68.14 74.25

F1 (%) 72.66 61.73 65.09 64.53 68.51 72.60

KRAS (single-task)

ACC (%) 65.86 66.84 59.01 59.85 64.49 68.27

SEN (%) 60.15 61.4 58.76 58.57 63.58 66.94

SPE (%) 68.47 69.95 61.16 61.92 66.17 69.37

F1 (%) 60.06 60.79 66.27 64.32 68.25 69.70

EGFR (multi-task)

ACC (%) 72.93 69.4 61.54 62.34 68.03 75.06

SEN (%) 66.27 60.79 61.29 62.12 65.07 73.94

SPE (%) 76.94 72.37 63.85 62.53 70.31 76.69

F1 (%) 64.79 59.07 74.20 60.46 63.91 77.85

KRAS (multi-task)

ACC (%) 73.72 69.75 60.59 60.99 66.73 69.64

SEN (%) 69.38 65.72 59.1 59.01 64.29 68.72

SPE (%) 76.72 71.48 60.73 62.34 67.18 72.57

F1 (%) 68.34 56.62 65.14 55.09 60.00 77.50

EGFR, epidermal growth factor receptor; KRAS, Kirsten rat sarcoma; AUC, area under the curve; sensitivity; ACC, accuracy; SEN, sensitivity; 
SPE, specificity.

overall results, the mutation prediction results for EGFR 
were better than those for KRAS, which is probably due to 
the sensitive of EGFR to images. Taking our MMDL model 
as an example, the ACC in single-task prediction of EGFR 
was 7.06% higher than that of KRAS, and the ACC in 
multi-task prediction of EGFR was 7.78% higher than that 
of KRAS.

Visualization of the models

Our model aims at examining the relationship between 
tumor image features and EGFR/KRAS mutations. We used 
deep learning visualization to explain the prediction process 
and to identify the tumor regions that are most relevant 
to the detection of EGFR mutations and KRAS mutations. 
Since our model is an end-to-end model, the visualization 
of tumor areas can facilitate clinicians’ focus on the tumor 

areas that require attention.
To evaluate our proposed MMDL model’s feature 

extraction performance and understand why excellent 
feature extraction performance can be realized on CT 
images, we visualized the middle layer of our deep learning 
model, as illustrated in Figures 7,8. We randomly selected 
7 nodules between the EGFR mutant/wild type and the 
KRAS mutant/wild type (the first row). The class activation 
map (CAM; the second row) of the last convolutional layer 
was visualized, where CAM is a heat map that highlights 
the decision maker’s attention when making the decision, 
which reveals areas that are related to the prediction (47). 
Furthermore, we overlaid the CAM on the original nodule 
image to more intuitively display the nodule area associated 
with the prediction (the third row). Figures 7,8 present the 
activation results of EGFR and KRAS mutations and the 
wild types, respectively. Rows (A), (B), and (C) in Figures 
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Figure 7 Epidermal growth factor receptor (EGFR) mutation and wild type: (A) tumor image, (B) class activation map (CAM), and (C) 
suspicious area.

7,8 represent the tumor area, CAM and suspicious area, 
respectively. Figures 7,8 suggest that the proposed MMDL 
model can correctly activate the corresponding nodule area 
for EGFR or KRAS.

Comparison of results among multiple views

To evaluate the advantages of multiple views, we compared 
different single views and various combinations of views. 
The comparison results are presented in Figure 9 and Table 5.  
Following our hypothesis, multi-views outperformed every 
single view, as multi-views contained sufficient nodule 

information. In predicting the single view, views 4, 6, 7, 
and 9 achieved superior performance as they obtained more 
information than the remaining views.

We also compared the prediction results under various 
combinations of views 4, 6, 7, and 9 to explore the 
prediction performances under various combinations, as 
presented in Table 5. The results demonstrated that even 
the combination of the most accurate prediction, that is, 
the combination of views 4, 6, 7, and 9, could not reach the 
prediction performance of all views.
Comparison with the state of the art methods
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Figure 8 Kirsten rat sarcoma (KRAS) mutation and wild type: (A) tumor image, (B) class activation map (CAM), and (C) suspicious area. 

Most studies have proven that CT image features can 
predict EGFR mutations. The single-task prediction of 
EGFR mutations in our study was compared with the state 
of the art methods. The comparison results are presented 
in Table 6. Studies A, B, C, and D predicted gene mutations 
based on deep learning methods, and the remaining studies 
utilized radiomics or traditional statistical methods.

Among the deep learning methods, A used pathological 
images to predict mutations in multiple genes (STK11, 
EGFR, FAT1, SETBP1, KRAS, and TP53), with a predictive 
average AUC of 0.754. A had a larger dataset and was 
an earlier study in the literature on using deep learning 
to predict gene mutations. In B, CT images were used 

to predict gene mutations using deep learning methods. 
An end-to-end deep learning model was constructed 
based on 844 datasets, and a predicted AUC of 0.81 was 
obtained. C used 3D CNN to predict EGFR mutations in 
lung adenocarcinoma. Predicted AUC values of 0.776 and 
0.838 were achieved without clinical data and with clinical 
data, respectively, which supported the necessity of adding 
clinical information and demonstrated that adding a small 
amount of clinical information to the training model could 
effectively improve the predictive performance of the 
model. D had a larger dataset, extracted richer features (deep 
features, clinical features, and radiomics features), had a 
higher AUC value of 0.834 and obtained higher SEN and 
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View 1~9, Ac=69.64%, Se=68.72%, Sp=72.57%, AUC=74.23%
View 9, Ac=67.19%, Se=66.03%, Sp=68.69%, AUC=73.57%
View 8, Ac=65.17%, Se=66.97%, Sp=67.52%, AUC=70.82%
View 7, Ac=66.82%, Se=66.59%, Sp=67.91%, AUC=72.01%
View 6, Ac=66.93%, Se=67.15%, Sp=68.28%, AUC=73.36%
View 5, Ac=64.93%, Se=63.43%, Sp=66.47%, AUC=70.27%
View 4, Ac=66.77%, Se=67.92%, Sp=68.59%, AUC=72.61%
View 3, Ac=64.87%, Se=63.69%, Sp=67.24%, AUC=70.23%
View 2, Ac=63.42%, Se=63.12%, Sp=64.19%, AUC=70.36%
View 1, Ac=64.93%, Se=63.61%, Sp=66.57%, AUC=69.19%

View 1~9, Ac=75.06%, Se=73.94%, Sp=76.69%, AUC=81.29%
View 9, Ac=72.56%, Se=70.83%, Sp=74.18%, AUC=78.36%
View 8, Ac=70.06%, Se=69.92%, Sp=70.38%, AUC=76.67%
View 7, Ac=72.19%, Se=70.13%, Sp=72.69%, AUC=77.26%
View 6, Ac=72.32%, Se=69.27%, Sp=73.25%, AUC=78.21%
View 5, Ac=71.23%, Se=69.39%, Sp=72.06%, AUC=76.32%
View 4, Ac=71.56%, Se=70.61%, Sp=73.69%, AUC=77.58%
View 3, Ac=68.45%, Se=67.18%, Sp=70.62%, AUC=76.71%
View 2, Ac=69.61%, Se=68.37%, Sp=73.59%, AUC=76.25%
View 1, Ac=69.29%, Se=68.11%, Sp=72.37%, AUC=76.64%

Figure 9 Receiver operating characteristic (ROC) curves of the proposed multi-channel and multi-task deep learning (MMDL) model and 9 
models for (A) epidermal growth factor receptor (EGFR) and (B) Kirsten rat sarcoma (KRAS).

SPE than methods A, B, and C.
Methods E, F, G, and H used radiomics features to predict 

gene mutations. G had the largest dataset, extracted clinical 
characteristics, and achieved a higher AUC value of 0.775. 

Method I extracted semantic features for prediction and 
obtained excellent classification performance (AUC=0.89), 
but the extraction of semantic features required professional 
radiomics physicians. Compared with method I, our 

method does not require specialized radiomics physicians to 
participate in the extraction of semantic features, while also 
achieving excellent classification performance. Method I 
also showed that semantic features could accurately predict 
EGFR mutations but not KRAS mutations. However, our 
model can simultaneously predict multiple gene mutations 
and do not require physicians to extract semantic features, 
which further demonstrates our deep learning model’s 

Table 5 Performance of the multi-channel and multi-task deep learning (MMDL) model in the validation dataset on patches that were extracted 
from various view combinations

View
EGFR KRAS

AUC (%) ACC (%) SEN (%) SPE (%) F1 (%) AUC (%) ACC (%) SEN (%) SPE (%) F1 (%)

4 & 6 79.29 72.64 71.72 74.69 72.03 73.15 67.21 67.04 69.31 72.17

4 & 7 78.84 72.03 71.92 72.61 72.61 72.78 67.22 66.53 68.71 71.44

4 & 9 79.86 72.98 72.17 74.37 73.14 73.96 67.68 68.12 69.57 69.15

6 & 7 79.28 72.54 71.93 73.52 75.35 73.57 67.3 67.12 68.68 70.41

6 & 9 79.94 72.87 72.07 74.18 73.74 74.04 68.12 67.39 70.39 73.18

7 & 9 79.32 72.67 71.55 72.93 69.77 71.72 67.51 66.89 68.51 71.77

4 & 6 & 7 79.68 73.16 72.68 73.52 69.89 73.86 67.93 67.13 68.25 67.68

4 & 6 & 9 80.65 73.49 72.15 74.67 71.82 73.99 68.57 68.23 71.68 73.00

4 & 7 & 9 79.95 73.02 72.53 74.64 76.53 73.92 68.33 68.06 68.79 71.43

6 & 7 & 9 80.11 73.03 72.13 73.68 72.17 73.96 68.47 67.94 69.15 70.78

4 & 6 & 7 & 9 80.96 74.31 73.46 75.26 75.11 74.07 68.83 68.03 69.82 70.71

1–9 81.29 75.06 73.94 76.69 77.85 74.23 69.64 68.72 72.57 77.50

EGFR, epidermal growth factor receptor; KRAS, Kirsten rat sarcoma; AUC, area under the curve; sensitivity; ACC, accuracy; SEN, sensitivity; 
SPE, specificity.
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Table 6 Comparison of our multi-channel and multi-task deep learning (MMDL) method with the state of the art methods

Cancer type
Number of 
patients

Images Extracted features AUC ACC (%) SEN (%) SPE (%) 

A Coudray (1) NSCLC 567 Pathological Deep features 0.754 – – –

B Wang (26) LUAD 844 CT Deep features 0.810 73.86 72.27 75.41 

C Xiong (27) LUAD 158 CT Deep features, clinical features 0.838 77.20 75.80 79.10

D Li (28) LUAD 1,010 CT Deep features, clinical features, 
radiomics 

0.834 82.20 74.20

E Velazquez (10) LUAD 258 CT Radiomics, semantic features 0.670 – – –

F Liu (9) LUAD 288 CT Clinical features 0.709 – – –

G Li (21) NSCLC 312 CT Radiomics, clinical features 0.775 – –

H Zhang (12) NSCLC 180 CT Radiomics 0.873 75.60 70.90 79.80

I Gevaert (20) NSCLC 186 CT Semantic features 0.890 – – –

J Guan (14) NSCLC 85 PET/CT SUVmax, clinical features 0.770 77.60 64.60 82.50

Our methods NSCLC 363 CT Deep features, clinical features 0.866 79.43 78.27 81.35

LUAD, lung adenocarcinoma; NSCLC, non-small cell lung cancer; EGFR, epidermal growth factor receptor; KRAS, Kirsten rat sarcoma; 
AUC, area under the curve; sensitivity; ACC, accuracy; SEN, sensitivity; SPE, specificity.

superior performance.
Method J used PET/CT to extract SUVmax and clinical 

features and constructed a multivariate analysis model with 
an AUC value of 0.77 and an ACC rate of 77.6%.

Our model learns nodules’ features from multiple 
views, inputs the multi-tasking deep learning model, and 
simultaneously predicts EGFR and KRAS mutations. The 
multi-task prediction tasks influence and promote each 
other. The results demonstrate that our model achieves 
higher ACC, SEN, and SPE than other available deep and 
radiomics models.

Discussion

In our study, an MMDL framework for predicting EGFR 
and KRAS mutations using non-invasive CT images in 
NSCLC was proposed. The results suggested that our model 
is a feasible model for predicting both EGFR and KRAS 
mutations in NSCLC. Our method’s main advantage is that it 
automatically learns CT image features, thereby eliminating 
the need to extract features manually. Furthermore, a small 
amount of patient personal information (age, gender, and 
smoking status) was included in our model’s learning process, 

A B

Figure 10 Performance of the multi-channel and multi-task deep learning (MMDL) model with scratch inception-attention-resnet and 
pre-trained inception-attention-resnet for the prediction of (A) EGFR mutations and (B) KRAS mutations. EGFR, epidermal growth factor 
receptor; KRAS, Kirsten rat sarcoma; AUC, area under the curve; sensitivity; Acc, accuracy; Sen, sensitivity; Spe, specificity.
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Table 7 Training dataset’s prediction results with the incorporation of 3 types of patient personal information 

EGFR KRAS

AUC (%) ACC (%) SEN (%) SPE (%) F1 (%) AUC (%) ACC (%) SEN (%) SPE (%) F1 (%)

Null 81.64 73.21 64.36 78.72 66.83 74.29 67.04 64.29 70.13 67.36

Age 81.83 73.36 65.51 77.62 66.37 74.95 67.63 64.80 71.46 69.72

Sex 83.05 74.91 68.04 79.96 69.68 75.18 69.29 65.92 72.38 67.84

Smoking status 84.64 75.23 71.13 80.19 75.87 75.68 70.24 64.16 73.53 66.50

Age, sex, smoking status 86.56 79.43 78.27 81.35 82.59 78.97 72.25 71.81 74.26 80.94

EGFR, epidermal growth factor receptor; KRAS, Kirsten rat sarcoma; AUC, area under the curve; sensitivity; ACC, accuracy; SEN, sensitivity; 
SPE, specificity.

Table 8 Validation dataset’s prediction results with the incorporation of 3 types of patient personal information

EGFR KRAS

AUC (%) ACC (%) SEN (%) SPE (%) F1 (%) AUC (%) ACC (%) SEN (%) SPE (%) F1 (%)

Null 78.05 70.93 65.27 75.28 66.12 71.93 64.13 62.76 67.43 62.83

Age 78.16 71.06 66.28 75.13 67.81 72.02 64.48 61.33 68.29 65.40

Sex 79.64 72.15 66.87 79.64 72.01 72.81 66.53 62.27 68.15 68.39

Smoking status 80.26 72.30 68.76 77.37 74.51 72.46 67.19 62.37 70.70 72.41

Age, sex, smoking status 81.29 75.06 73.94 76.69 77.85 74.23 69.64 68.72 72.57 77.50

EGFR, epidermal growth factor receptor; KRAS, Kirsten rat sarcoma; AUC, area under the curve; sensitivity; ACC, accuracy; SEN, sensitivity; 
SPE, specificity.

meaning that more prior knowledge can be acquired, and 
the robustness of the learning model can be increased. The 
experimental results demonstrated that our method could 
simultaneously predict EGFR and KRAS mutations and 
outperform single predictions.

Our method is a non-invasive auxiliary detection method 
suitable for avoiding invasive damage when surgery and 
biopsy are not convenient. Also, CT images are easily 
available throughout the treatment period to monitor 
EGFR and KRAS genetic mutations. The acquisition of CT 
images is relatively inexpensive in terms of cost and time. 
Moreover, our method does not require physicians’ domain 
knowledge, facilitating the economical and convenient 
prediction of EGFR and KRAS mutations.

To demonstrate that transfer learning could improve 
the gene mutation prediction performance in terms of 
prediction ACC, we evaluated the performances of pre-
trained inception-attention-resnet and scratch inception-
attention-resnet with the same architecture. We used cat 
vs. dog to train inception-attention-resnet in 50 epochs. 
The results in Figure 10 suggest that pre-trained inception-

attention-resnet achieved higher prediction performance 
than scratch inception-attention-resnet.

Furthermore, we examined the effect of the addition of 
clinical information on the prediction results in the multi-
task prediction. The results (Tables 7,8) suggest that the 
addition of clinical information to the model significantly 
improved the performance. For predicting EGFR mutations, 
the ACC value increased by 8.50% in the training dataset 
and 5.82% in the validation dataset. The AUC value 
increased by 6.03% in the training dataset and 4.15% in the 
validation dataset. The ACC value increased by 7.77% in 
the training dataset and by 8.59% in the validation dataset 
for predicting KRAS mutations. The AUC value increased 
by 6.30% in the training dataset and by 3.20% in the 
validation dataset.

We examined the effects of adding various types 
of clinical information on the prediction results. The 
experimental results demonstrated that the types of 
information, in increasing order of influence on the 
prediction results, were age, gender, and smoking status, 
which we added to the clinical information. Age had the 
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Figure 11 Epidermal growth factor receptor (EGFR) mutation and wild type: (A) tumor image; (B) activation map without attention 
mechanism; (C) activation map with attention mechanism.

smallest effect among the 3 factors. The predicted AUC 
for EGFR mutations after adding age increased by 0.11, 
and ACC increased by 0.13. The predicted AUC value for 
KRAS mutations after the addition of age increased by 0.09, 
and the ACC increased by 0.35. The effect of gender was 
weaker than the effect of smoking status.

The incidence of EGFR mutations was significantly 
higher in women and non-smokers. Although EGFR 
mutations were more often detected in early patients than 
in advanced patients, the difference was not significant.

To illustrate our proposed model’s effectiveness after 
the addition of attention strategy, we randomly selected 

different types of nodules more intuitively for visualizing 
EGFR mutation or wild type, and KRAS mutation or wild 
type. We visualized their feature activation maps before and 
after adding the attention mechanism, as shown in Figures 
11,12. Row A is the original nodule image, row B is the 
feature activation map without the attention mechanism, 
and row C is the feature activation map with the attention 
mechanism. As can be seen from Figures 11,12, adding the 
attention mechanism to the model significantly reduced 
the meaningless low-level background blue features and 
highlighted the yellow features of the high-level nodule 
region with the most discriminative value, thereby 
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Figure 12 Kirsten rat sarcoma (KRAS) mutation and wild type: (A) tumor image; (B) activation map without attention mechanism; (C) 
activation map with an attention mechanism.

significantly improving the prediction performance of the 
model.

Our study used deep learning models to detect EGFR 
and KRAS mutations and to explore their relationship. In 
multi-task prediction in the validation dataset, the AUC 
for detecting EGFR mutations was 81.29%, the ACC was 
75.06%, the SEN was 73.94%, and the SPE remained 
76.69%. The overall radiomics model validation results 
were an AUC of 72.63%, an ACC of 73.84%, the SEN of 
73.61%, the SPE of 73.94%. Therefore, our MMDL model 
outperformed the radiomics model in predicting EGFR and 

KRAS mutations. Furthermore, the radiomics model requires 
the radiologist to delineate the lesion area in advance. These 
results suggest that the proposed deep learning model can 
predict EGFR and KRAS mutations simultaneously. However, 
the use of non-invasive image analysis to predict gene 
mutations is never a substitute for biopsies. 

Compared with pathological biopsy, the main advantage 
of image analysis is that it provides an alternative solution 
if the patient’s physical condition is not suitable for biopsy. 
In the process of exploring tumor treatment, the proposed 
prediction model can be repeatedly tracked.
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Conclusions

In our study, a deep learning model that uses non-
invasive CT images was proposed to predict EGFR and 
KRAS mutations in NSCLC. We used a 363-case dataset 
collected by our partner hospital to build our model, and 
the accuracies for predicting EGFR and KRAS mutations 
were 79.43% and 72.25%, respectively. Using 163 cases 
available in the public TCIA dataset to evaluate our model, 
the accuracies for detecting EGFR and KRAS mutations 
were 75.06% and 69.64%, respectively. The results suggest 
that our model is a feasible model for predicting EGFR and 
KRAS mutations in NSCLC simultaneously. Our method’s 
main advantage is that it is a non-invasive auxiliary detection 
method suitable for avoiding invasive damage if surgery and 
biopsy are not convenient. The acquisition of CT images is 
relatively inexpensive and fast. Moreover, our method does 
not require a physician’s domain knowledge, facilitating the 
economic and convenient prediction of gene mutations in 
EGFR and KRAS.

Although satisfactory prediction results have been 
obtained for predicting EGFR and KRAS mutations 
simultaneously, our model has several limitations. First, 
the dataset was small, and some data were incomplete. 
Furthermore, the proportion of gene mutation data was 
small in our collected dataset. Therefore, in future research, 
we will collect additional data and use them to build our 
model. Second, only 1 patient in our dataset had mutations 
in both EGFR and KRAS. Thus, we did not study this 
patient and whether it is possible to predict both genes 
simultaneously through further image study.

Additionally, pathological images were not used in 
our study, but other studies have shown that pathological 
images can be used to predict gene mutation information. 
Therefore, in our subsequent studies, we will also attempt to 
utilize pathological images. Finally, the effect of staging on 
the results was not reflected in our comparative experiments 
because it is not possible to conduct comparative training 
in deep models using so few cases of mutations in various 
stages. In subsequent studies, we will collect more data 
to compare among different stages and explore gene 
mutations’ prediction using images of different stages.
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