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Introduction

Major trauma can cause prolonged disability or death and 

remains the leading cause of death under the age of 45 

(1,2). The interval from the time of injury until computed 

tomography (CT) is an established key performance 

indicator that evaluates the clinical care of major trauma 

patients (3). A minimum standard of 60 minutes (ideally 
30 minutes) for image acquisition as well as radiological 
reporting is recommended (3). In an acute trauma setting, 
there are many patients receiving a (whole-body) CT scan 
for the first time. Therefore, there is a high potential to 
detect relevant secondary image findings that have been 
unknown so far and might need follow-up control or 
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treatment. Since radiologists must report time-critically 
in an emergency setting, there is a relevant risk of under-
detection with regard to secondary findings. Indeed, 
other studies have demonstrated relevant discrepancies 
between initial reports and supplementary senior reviews of 
emergency CTs (4,5). To our knowledge, the added value 
of any software-based automatic review for the detection of 
secondary findings in emergency CTs has not been reported 
so far. 

Advances in artificial intelligence (AI) techniques raise 
the question whether the additional semi-automated image 
analysis (AI-assisted reporting) might reduce the number 
of missed secondary findings in a time-efficient fashion. 
Recent studies demonstrated the general ability of AI to 
perform image analysis on the level of healthcare specialists 
(6-9). Nevertheless, available AI algorithms usually have a 
very narrow clinical focus and are often solely evaluated by 
quantifying the achieved diagnostic metrics compared with 
those of radiologists. In the emergency setting, promising 
results could exemplarily be shown for the CT detection of 
intracranial hemorrhage (10,11), ischemic strokes (12) or 
vertebral fractures (13). 

Here, we clinically evaluate a software platform (including 
several prototype AI algorithms not yet commercially 
available and limited to chest CT analysis) that aims to 
detect the following secondary thoracic findings: lung 
lesions, cardiomegaly, coronary plaques, aortic aneurysms 
and vertebral fractures. We hypothesize a relevant number 
of initially missed secondary findings that would have been 
detected in an AI-assisted reading setting. 

Methods

The study was approved by institutional ethics board 
of LMU University Hospital (approval number 18-
399); individual consent was waived due to retrospective 
observational study character and re-analysis of anyway 
performed and clinically indicated CT imaging.

Patient population

We retrospectively identified 105 patients who received a 
whole-body CT scan in our emergency department (shock-
room) from January to November 2019. Patients have 
been consecutively included. No exclusion criteria have 
been applied. Siemens SOMATOM Force CT scanner was 
used; the protocol included a native skull CT, a whole-body 
CT (skull base until proximal thigh) with arterial contrast 

media enhancement (90 mL Imeron® 400 MCT, flow  
5 mL/s, 5 s delay after the detection of 100 Hounsfield units 
(HU) in the ascending aorta, detailed scanning parameters, 
see Table 1) and an additional abdominal scan with venous 
contrast media enhancement (additional delay of 40 s after 
the previous scan had been finished). The raw DICOMs 
(one DICOM per slice) of the thoracic arterial contrast 
medium phase (slice thickness 0.75 mm, soft tissue kernel 
Br36d) were analyzed by a set of AI algorithms (abdominal 
slices have been cropped to reduce the processing time, no 
other preprocessing was performed). Graphically illustrated 
results have been returned to our Picture Archiving and 
Communication System (PACS) (see Figure 1). The 
separately acquired native skull and venous phase abdominal 
scans (included in our standard emergency whole-body CT 
protocol) were not included in our analysis, which is solely 
focused on thoracic pathologies.

Age (55±22 years), gender (72% male), reasons for 
emergency CT scan (93% trauma) and major image 
findings were recorded (see Table 1). As consecutively 
extracted from clinical routine, image data also includes 
examinations of limited quality [e.g., pulsation artefacts in 
non-electrocardiogram (ECG)-gated CTs or respiratory 
artifacts]. Eighteen out of 105 CT scans (17%) have been 
originally reported by a board-certified radiologist alone, 
the other 87 CT scans (83%) have been commonly reported 
by a radiology resident and a board-certified radiologist. 
Twenty-five different radiology residents and 18 different 
board-certified radiologists have been involved, see Table 1.

AI algorithm modules

AI-Rad Companion Chest CT (Siemens Healthineers, 
Erlangen, Germany) is a software platform including 
AI-algorithm modules for the detection of different 
abnormalities in the thorax. An on-premise prototype 
not yet commercially available has been used in this 
work. The prototype was trained with hundreds (heart 
segmentation, thoracic vertebrae analysis) up to several 
thousands (lung lesion analysis, lung lobe segmentation) 
datasets, for each algorithm of at least five different clinical 
sites, up to 50% public data and at least three vendors. 
Training data was native as well as contrast enhanced 
(coronary plaque detection and heart segmentation: native 
only) and reconstructed using filtered backprojection and 
iterative reconstruction using soft to hard reconstruction 
kernels. The training data had no particular focus on  
emergency CTs. 
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Table 1 Patient characteristics, technical specifications of CT image acquisition and involved radiologists in initial reporting

Variables Value

Patient population, n 105

Age (years), mean ± SD 55±22

Sex male, n [%] 76 [72]

Reasons for emergency CT scan, n [%]

Trauma 97 [92]

Unexplained unconsciousness 6 [6]

Unexplained need for resuscitation 2 [2]

Trauma-associated image findings, n [%] 

Fractures 69 [66]

Bleedings—intracranial 25 [24]

Bleedings—others*1 18 [17]

Pneumothorax 11 [10]

Infectious, e.g., pneumonia*2 6 [6]

Organ laceration 4 [4]

Acute vascular*3 4 [4]

Imaging characteristics

Time of image acquisition 01/2019–11/2019

CT scanner (Siemens) SOMATOM Force

Tube voltage (monoenergy) Ref.-kV, 110 kV (care kV)

Tube current Ref.-mAs, 230 mAs (care dose 4D)

Rotation time 0.5 s

Pitch 1.5

ECG-triggered No

Contrast media 90 mL Imeron® 400 MCT

Delay 5 s after detection of 100 HU in the ascending aorta 

Reconstruction Kernel Br36d

Slice thickness (for AI analysis) 0.75 mm

Slice thickness (for radiological review) 0.75/3 mm

Radiologists involved in initial reporting

Board-certified radiologists (n) 18

Radiology residents (n) 25

Signs of extracranial bleeding include hematoma (also in preformed cavities, e.g., hematothorax) as well as active bleedings (*1). In 
case of typically distributed opacities/consolidations and a conclusive clinical context, pneumonia is partially considered to be trauma-
associated due to aspiration (*2). Acute vascular pathologies: vessel dissection, vascular occlusion of questionable acute origin, trauma-
associated perfusion deficit of the extremities (*3). SD, standard deviation; CT, computed tomography; AI, artificial intelligence; ECG, 
electrocardiogram.
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The processing time was measured as 5–10 minutes 
per CT, including the analysis of the following modules 
(corresponding network architectures are provided in a 
Supplemental file).

Heart segmentation and coronary plaque detection 
Heart segmentation is performed using a deep U-shaped 
network (14) consisting of four convolutions and down-
sampling steps, followed by four similar up-sampling layers. 
The heart segmentation mask is used to compute the heart 
volume and to define a region of interest (ROI) for the 
coronary calcium detection. Within the ROI an initial 
set of voxels as candidates for potentially calcified regions 
is identified by HU-thresholding. For each candidate 
voxel an image patch surrounding the voxel is fed into 
a deep learning-based classification algorithm with two 
components: A convolutional neural network which takes 
the image patch and a precomputed coronary territory map 
as inputs, and a dense neural network which operates on 
the coordinates of the voxel. Combining the features from 
both components allows a final prediction as to whether the 

voxel belongs to the coronary arteries. The total volume of 
the detected coronary calcium is reported.

Aorta analysis
Aortic landmarks (aortic root/aortic arch center/
brachiocephalic artery bifurcation/left common carotid 
artery/left subclavian artery/celiac trunk) are detected 
automatically based on deep reinforcement learning (15). 
Within the ROI the segmentation is performed using an 
adversarial deep image-to-image network (DI2IN) in a 
symmetric convolutional encoder-decoder architecture (16). 
Based on the aortic mask, a centerline model is used to 
generate the aortic centerline which is used in combination 
with aortic landmarks to identify nine measurement 
planes according to the guidelines of the American 
Heart Association (AHA) (17). In each measurement 
plane, multiple diameters are generated by computing 
intersections of rays starting from the centerline. Based 
on these diameters, the maximum in-plane diameter and 
its perpendicular equivalent are reported. The maximum 
diameters are used for threshold-based categorization for 
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Emphysema quantification (%LAV950):

Whole lung            :   0.08%
Left lower lobe      :   0.08%
Left upper lobe     :   0.08%

Right lower lobe     :   0.09%
Right middle lobe   :   0.02%
Right upper lobe     :   0.08%

Lesions
Lesion 01    --

Volume       --                  --
2D-Recist   --                  --
3D-Recist   --                  --

Lesion 02    --

Volume       --                  --
2D-Recist   --                  --
3D-Recist   --                  --

Lesion 03    --

Volume       --                  --
2D-Recist   --                  --
3D-Recist   --                  --

Previous:    --
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Previous:    --
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Heart
Heart                : 1,214.9 mL
Calcium burden: Moderate

Coronary plaque       : 312.3 mm3

Vascular
Aorta diameters (mm)

Sin. of Valsalva     :   32.4
Sinotub. junction  :   40.0
Mid ascending      :   34.9
Proximal arch        :   30.9
Mid arch                :   28.7

Prox. descending : 25.8
Mid descending   : 23.6
Diaphragm           : 21.9
Abdominal           : 22.0

Spine
         Height (mm)
Ant        Mid         Post Corr. HU

T1      17          16           17           215
T2      17          17           18           198
T3      18          17           19           177
T4      20          19           20           188
T5      20          18           20           199
T6      19          19           22           186
T7      20           19          22           163
T8      21          20           22           144
T9      22          21           23           140
T10    23          22           25           144
T11    23          24           27           185
T12    25          26           29           145

Figure 1 Graphically illustrated and quantified AI algorithm results. Different parts of the figure do not belong to the same patient. Left: 
aortic analysis with graphic illustration of nine landmark positions and an exemplarily illustrated measurement plane. Top center: lung 
lesion detection. Bottom center: vertebral body segmentation used for height measurements at anterior/posterior edge and in the vertebral 
center. Top right: cardiac segmentation allowing for the calculation of total cardiac volume and coronary plaque volumetry (illustrated in 
green). Bottom right: summary of algorithm results with corresponding quantifiable metrics. **, vertebra height reduced by more than 25% 
(compared to neighbour); ***, vertebra height reduced by more than 40% (compared to neighbour). AI, artificial intelligence.

https://cdn.amegroups.cn/static/public/QIMS-20-1037-supplementary.pdf
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different anatomic landmark positions derived from the 
AHA guidelines (threshold #1 for diameters exceeding the 
population’s mean by more than two standard deviations, 
threshold #2 for diameters exceeding the population’s 
mean by more than 50%, definition of landmark positions 
including population’s mean as described in the following 
subsection “aorta analysis”). 

Lung lobe segmentation (for heart/lung volume ratio 
quantification) 
This algorithm computes segmentation masks of the five 
lung lobes by taking the entire 3D CT volumes as input and, 
based on thereon, indicates probability maps indicating how 
likely voxels belongs to each lung lobe. It uses a DI2IN in a 
symmetric convolutional encoder-decoder architecture (16).

Lung lesions analysis 
Lung nodule detection is performed in a two-step approach: 
nodule candidate generation (NCG) and false positive (FP) 
reduction. The NCG is a 3D region proposal network 
based on faster-R-CNN (18) that indicates a few suspicious 
regions called “nodule candidates” and assigns probability 
scores. The FP reduction module consisting of several 
Res-Net (19) units further evaluates the likelihood for 
the nodule candidate to be a true nodule or a FP one by 
updating the scores generated by the NCG module. The 
final decision is made by considering the weighted sum of 
the scores generated by NCG and FP reduction modules. 
After detection, nodules are algorithm-based segmented and 
2D diameter and 3D volume are provided. The algorithm 
does not provide a confidence assessment regarding possible 
malignancy.

Thoracic vertebrae analysis 
The 12 thoracic vertebrae are localized and labeled using 
an algorithm based on wavelet features, AdaBoost, and 
local geometry constraints (20). The vertebra centers are 
used to determine regions of interest for the subsequent 
vertebral segmentation. Segmentation is performed within 
the ROI using a DI2IN in a symmetric convolutional 
encoder-decoder architecture (16). The sagittal midplane 
is extracted from the segmentation masks and within this 
plane height measurements are performed at anterior, 
medial and posterior location. Afterwards, the heights are 
compared with the values of the neighboring vertebras 
using the Genant severity grading method (21). Although 
originally developed on chest radiographs, the Genant 
method is also widely used in CT imaging (22). Height 

reductions exceeding 20% of the adjacent vertebra’s heights 
are considered as suspicious for fracture. The algorithm 
does not distinguish between preexisting and new fractures.

Image analysis, results quantification & statistics

Initial radiologists’ reports and AI algorithm results have 
been screened for discrepancies focusing on the above-
mentioned secondary findings. AI algorithm findings have 
been reviewed by an experienced radiology resident (3 years 
of experience in thoracic imaging with >5,500 reported 
CT scans; ambiguous cases were discussed with a board-
certified radiologist). AI-detected heart and coronary plaque 
volumes of subgroups differing in whether coronary plaques 
or cardiomegaly was manually suspected by radiologists 
have been statistically compared by Student’s t-test. The 
discriminative power of the corresponding algorithms 
has been analyzed by receiver operating curve (ROC) 
analysis with radiologists’ evaluation serving as reference 
standard. ROC operating points have been approximated 
to the maximum sum of sensitivity and specificity (Youden’s 
statistics) and corresponding metrics [e.g., sensitivity, 
specificity, FPs, positive predictive value (PPV)] have been 
quantified (23). The software GraphPad Prism was used for 
graphic illustrations and statistical analysis.

Heart volume
Heart volume was classified according to the initial 
radiologists’ reports as follows: “cardiomegaly” vs. 
“borderline” vs. “initially not reported”. Initially not 
reported cardiac sizes have been re-classified by the above-
mentioned radiology resident. Correlation and ROC 
analysis was performed based on the AI-calculated total 
heart volume and the radiologists’ assessment as a reference 
standard (“borderline” and “cardiomegaly” have been 
pooled and considered as pathologic yielding in a necessary 
binary reference standard).

Coronary plaques
Coronary plaques were classified according to the initial 
radiologists’ reports as follows: “reported” vs. “not 
reported”. AI-detected plaques have been reviewed for 
plausibility. Correlation and ROC analysis were based on 
the AI-detected plaque volume. 

Aorta analysis
Aorta analysis was based on diameter quantification at 
nine landmark positions according to the AHA guidelines 
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with the corresponding population characteristics (mean 
± standard variation) (20): #1—sinuses of Vasalva (37.7 
±3.8 mm); #2—sinotubular junction (33.2±3.7 mm); #3—
mid ascending aorta (28.6±3.6 mm); #4—proximal aortic 
arch (28.2±3.5 mm); #5—mic aortic arch (27.7±3.3 mm); 
#6—proximal descending aorta (27.3±3.2 mm); #7—mid 
descending aorta (26.9±3.1 mm), #8—aorta at diaphragm 
(25.6±3.4 mm), #9—aorta at celiac origin (26.1±3 mm). 
AI-detected diameters exceeding the population’s mean by 
more than two standard variations have been radiologically 
reviewed for plausibility and discrepancies compared with 
the original reports have been assessed. 

Lung lesions
Lung lesions were classified as follows: “solely detected by 
radiologists” vs. “detected by radiologists and AI” vs. “solely 
detected by AI”. Hereby, only the three largest lesions 
detected by the AI algorithm were considered. Lesions that 
have been only detected by the AI have been radiologically 
reviewed for plausibility and subclassified as follows: 
“granuloma” vs. “perifissural lymph nodes (PFNL)” vs. 
“trauma-associated” (including locally restricted ventilation, 
lung contusion, infiltrates e.g., after aspiration) vs. “scarred/
post-inflammatory” vs. “unclear/in recommendation of 
control” (>6 mm according to Fleischner’s criteria assuming 
a low-risk profile of the patients without any history of 
malignoma).

Vertebral fractures
Vertebral fractures were classified as follows: “solely 
detected by radiologists” vs. “detected by radiologists and 
AI” vs. “solely detected by AI”. Fractures that have been 
only detected by the AI have been radiologically reviewed 
for plausibility including a visual assessment regarding 
fracture age.

Results

Heart size

Heart size was initially reported for 54 out of 105 patients 
(51%); among them 29 patients with “normal heart size” 
(53.7%), 15 patients with “cardiomegaly” (27.8%) and  
10 patients having been classified as “borderline” (18.5%) 
(see Figure 2, A1). AI analysis revealed significantly elevated 
total heart volumes for those patients radiologically classified 
as “borderline” or “cardiomegaly” compared with those 
radiologically classified as “normal heart size” (see Figure 2, 

A1). For 51 out of 105 patients (49%) without a mentioned 
cardiac size assessment in the original report, heart size was 
visually reviewed by an experienced radiology resident: here 
again, AI-detected total heart volume significantly correlates 
with the resident’s re-assessment (see Figure 2, A1). The 
similar effect could be shown by considering the ratios 
between total lung and total cardiac volume (see Figure 2, 
B1) (three patients were excluded because of non-functional 
lung volumetry, e.g., due relevant pneumothorax). ROC 
analysis with the radiologists’ heart size assessment as 
a reference standard (“cardiomegaly” and “borderline” 
have been pooled and considered as an enlarged heart to 
obtain the necessary binary reference standard) revealed 
an AUC of 0.754 for the AI-detected total heart size (see 
Figure 2, A2). In the same way, an AUC of 0.775 could 
be reached by considering the AI-detected heart-lung-
volume-ratios (see Figure 2, B2). The definition of a total 
heart volume threshold (threshold optimization according 
to Youden Statistics) at 902.5 mL for an AI-based “yes-or-
no-call” achieved a sensitivity/specificity of 77.3%/67.3%,  
17 FPs and a resulting PPV of 70.7% (for “borderline” and 
“cardiomegaly”). Similarly, the definition of a heart-lung-
volume-ratio threshold at 0.245 for an AI-based decision 
yields a sensitivity/specificity of 88.5%/60.0%, 19 FPs and 
a resulting PPV of 69.7%. By applying the AI threshold for 
total/relative heart assessment, the AI would have revealed 
25 out of 32 patients with an enlarged heart size that was 
not mentioned in the initial report, among them 21 out of  
25 cases with visually confirmed cardiomegaly or borderline 
heart size. 

Coronary plaque volumetry

Coronary plaque volumetry revealed plaques for 99 
out of 105 patients with a high false positive rate (FPR) 
supposedly caused by motion artefacts (observed for 
approx. 90% of scans) and applied contrast media: AI-based 
plaque suspicion was radiologically confirmed for only 35 
out of 99 patients (35%), among them 17 patients with 
plaques that had not been mentioned in the initial report  
(see Figure 2, C1). Despite of the high FPR, detected 
plaque volume quantification significantly correlates 
with radiologists’ binary “yes-or-no-decision” and the 
corresponding ROC analysis revealed an AUC of 0.802 (see 
Figure 2, C2). The definition of a threshold at 69.35 mm3 
for an AI-based “yes-or-no-call” (threshold optimization, 
Youden statistics) achieved a sensitivity/specificity of 
80%/71.4%, 20 FPs with a PPV of 58%. Fifteen out of  
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17 patients with initially non-reported coronary plaques 
would have been identified by AI-based plaque volume 
detection exceeding this threshold. 

Aorta analysis

Aorta analysis revealed 35 out of 105 patients (33%) with 
initially non-reported but AI-detected aortic diameters 
exceeding the population’s mean by at least two standard 

deviations for at least one landmark position, which was 
radiologically confirmed for 34 out of 35 cases. The non-
confirmed case showed relevant motion artefacts of the 
ascending aorta. Eighteen out of the 34 patients with 
aortic ectasias showed enlarged diameters at more than one 
landmark position; the ascending aorta was involved in 33 
out of 34 cases. Three out of 34 patients had an ascending 
aorta diameter exceeding the population’s mean by more 
than 50% (see Figure 3). 

Figure 2 Algorithm analysis of cardiac volume and coronary artery plaques. A1/B1: subgroups have been built according to the cardiac 
assessment in the original reports; originally not evaluated cardiac sizes have been re-assessed (on the right, illustrated by the arrow). AI-
detected total cardiac volume (A1) as well as AI-detected relative cardiac/lung volume (B1) significantly correlate with radiologists’ visual 
assessment. Lung volumetry was not functional for three patients with extensive consolidations or pneumothorax (compare 105 cases in 
A1 with 102 cases in A2). Optimized thresholds are graphically illustrated, based on the calculations in A2/B2. A2/B2: ROC analysis was 
performed based on total cardiac volume (A2) and relative cardiac/lung volume (B2) detection with radiologic assessment serving as reference 
standard (“cardiomegaly” and “borderline” was pooled and considered to be pathologic). ROC operating points were approximated to the 
maximum sum of sensitivity and specificity, corresponding metrics are illustrated. C1: Patients with AI-detected coronary plaques (n=99 
out of 105) have been divided in subgroups according to primarily coronary plaque reporting by radiologists. Originally non-reported cases 
have been radiologically re-assessed and AI detection could be confirmed for 17 cases. Detected plaque volume significantly correlates with 
radiologists’ visual assessment. C2: ROC analysis was performed based on AI plaque volumetry and radiologists’ assessment as reference 
standard. ROC operating point (threshold 69.35 mm3) was approximated to the maximum sum of sensitivity and specificity, corresponding 
metrics are illustrated. A1/B1/C1: significance levels were analyzed by non-paired Student’s t-test and illustrated as *, P<0.05; **, P<0.01; ***, 
P<0.001; ****, P<0.0001. AI, artificial intelligence; ROC, receiver operating curve; SD, standard deviation.
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Lung lesions
 

Lung lesions were detected for 66 out of 105 patients: 
detection solely by radiologists for one patient (1.5%), 
detection by radiologists as well as AI for 11 patients 
(16.7%) and detection solely by the AI algorithm for  
54 patients (81.8%) (see Figure 4, A1). In a single-lesion-
focused illustration limited to the three largest AI-detected 
lesions for each patient, we identified 81 out of 108 (75%) 
lesions that have been solely detected by the AI algorithm 
(see Figure 4, A2). Sixty-four out these 81 lesions (79%) 
were radiologically confirmed for plausibility and classified 
as follows: scarred or post-inflammatory (n=30, 37.0%), 
trauma-associated including pathologies as previously 

described in the methodology section (n=21, 25.9%), 
granulomas (n=5, 6.2%), PFNLs (n=5, 6.2%) and unclear 
in recommendation of control according to Fleischner’s 
criteria (n=3, 3.7%) (see Figure 4, A3). 

Vertebral fractures

Vertebral fractures were detected by radiologists and/or the 
AI algorithm for 52 out of 105 patients (49.5%) including 
64 different fractures (see Figure 4, B1/B2): 19 out of  
64 fractures (29.7%) were solely detected by radiologists, 
8 out of 64 fractures (12.5%) by radiologists as well as 
by the AI and 37 out of 64 vertebra bodies (57.8%) were 
classified as suspicious for fracture only by the AI algorithm. 
The algorithm showed a high FPR: only 13 out of 37 
fractures (35.1%) that have been exclusively detected by 
the AI algorithm were radiologically classified as suspicious 
for fracture (see Figure 4, B2). These 13 detected and 
initially missed fractures (12 different patients) were slight 
impressions of the endplates without relevant affections 
of the posterior edge, two of them (two different patients) 
radiologically appeared to have an acute traumatic origin. 

Discussion

Based on 105 “shock-room” emergency CT scans, we 
demonstrated an AI system that would have decreased the 
number of missed secondary thoracic findings in an AI-
assisted reading setting. The added clinical value could 
be quantified by the number of additional findings as 
follows: up to 25 (23.8%) patients with cardiomegaly or 
borderline heart size, 17 (16.2%) patients with coronary 
plaques, 34 (32.4%) patients with dilatations of the thoracic 
aorta, 13 additional vertebral fractures (two of them with 
an acute traumatic origin) and three lung lesions of two 
different patients that were radiologically classified as “in 
recommendation to control”.

Since all the patients have been referred to our emergency 
department as possibly life-threatening shock-room cases 
(most of them due to trauma), it can be assumed that they 
received whole-body imaging for the first time that possibly 
yields a relevant number of findings that had not been 
known so far. The patient’s benefit of additionally detected 
secondary findings depends on the clinical relevance in 
terms of necessary follow-up or treatment. Detected 
cardiomegaly or coronary plaques for example should 
lead to a cardiovascular follow-up, possibly ending up in a 
primary or secondary prevention that also includes medical 
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Figure 3 Algorithm-based identification of 35 patients 
with initially non-detected dilatations of the thoracic aorta, 
radiologically confirmed for 34 cases. Aorta was measured at nine 
landmark positions according to American Heart Association 
(AHA) guidelines; enlarged aortic diameters were identified 
between landmark position #2 (sinotubular junction) and #6 
(proximal descending aorta). Enlargements are graphically 
divided according to grade of dilatation in relation to the general 
population’s standard variation. Measurements at different 
landmark positions connected by dashed lines belong to the 
same patient. AI measurements highlighted in red could not be 
confirmed by radiological revision. 
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treatment (e.g., statins, β-blockers or ASS). Although 
total cardiac volume estimation in non-ECG-gated CTs 
cannot be considered as sufficiently accurate for a cardiac 
diagnostic (no gender- or age-dependent size assessment 
compared to an appropriate reference population, systolic 

or diastolic heart phase acquired randomly without 
ECG-gating), it can yield a recommendation for further 
diagnostics, e.g., echocardiography. Also, the detection of 
pre-existing vertebral fractures possibly due to osteoporosis 
might indicate an anti-osteoporotic treatment. But also, 

Figure 4 Lung lesions and vertebral body fractures detected by AI algorithm and/or radiologists; lung lesions solely detected by the AI 
are radiologically classified. A1/A2: 108 lung lesions were detected for 66 out of 105 patients; hereby 81 lesions of 54 patients were solely 
detected by the algorithm. A3: radiologists’ review and classification of AI-detected lesions that have not been mentioned in the initial 
radiological report: 64 out of 81 lesions were visually confirmed, among them 3 lesions of two different patients that have been classified as 
“recommended to control”. B1/B2: 64 vertebral body fractures for 52 out of 105 patients. Thirty-seven fractures of 33 patients have been 
solely detected by the algorithm; among them 13 fractures of 12 patients have been radiologically confirmed. Two of these fractures have 
been classified as acutely traumatic but stable without any involvement of the vertebra’s posterior edge. AI, artificial intelligence.

66 patients 108 lesions
81 lesions

only detected
by AI

Detection only by radiologists
(n=1/1.5%)
Detection by AI & radiologists
(n=11/16.7%)
Dection only by AI
(n=54/81.8%)

Detection only by radiologists
(n=1/0.9%)
Detection by AI & radiologists
(n=26/24.1%)
Dection only by AI
(n=81/75.0%)

Visually not confirmed
(n=17/21.0%)
Trauma-associated*
(n=21/25.9%)
Scarred/postinflammatory
(n=28/37.0%)
PFNL
(n=5/6.2%)
Granuloma
(n=5/6.2%)
Unclear in need of control
(n=3/3.7%)

52 patients 64 vertebra
fractures

Detection only by radiologists
(n=12/23.1%)
Detection by AI & radiologists
(n=7/13.5%)
Dection only by AI-not confirmed
(n=21/40.4%)
Dection only by AI-confirmed
(n=12/23.1%)

Detection only by radiologists
(n=19/29.7%)
Detection by AI & radiologists
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Dection only by AI-not confirmed
(n=24/37.5%)
Dection only by AI-confirmed
(n=13/20.3%)
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the indication for follow-up-imaging remains important: 
for malignancy assessment of lung lesions or to optimally 
balance the risks of aortic surgery with the probability 
of aneurysm rupture with high mortality in the case of 
growing aortic aneurysms. 

Nevertheless, not only sensitivity but also the PPV of the 
demonstrated algorithms is crucial to also not overwhelm 
reporting radiologists with FPs or non-relevant findings. 
Coronary plaque and vertebral fracture detection especially 
do not seem to be sufficiently specific in our clinical setting; 
focusing on coronary plaque detection, limited PPVs of 
58% due to a high number of FPs (n=20) are assumed to be 
caused by the CT protocol (contrast media enhancement, 
no ECG-gating) yielding pulsation artefacts of the coronary 
vessels and a limited contrast between contrast-enhanced 
blood vessels and directly adjacent calcified plaques. Indeed, 
from the radiologists’ point of view, there were strong 
limitations for the coronary artery assessment in 95 out of 
105 CT scans due to pulsation artefacts. Consequently, we 
would strongly expect an increasing diagnostic accuracy 
of the AI algorithm, e.g., by using ECG-gated cardiac CT 
protocols.

Focusing on vertebral fracture detection, we also 
observed a relevant number of FNs (n=19) as well as 
FPs (n=24), here limiting the PPV to 46.7%. This was 
commonly caused by an inappropriate segmentation of the 
vertebral bodies, but also due to the FP detection of other 
pathologies that are prone to mimic vertebral cover plate 
impressions, e.g., Schmorl’s nodes. Furthermore, fracture 
detection is limited to vertebral height reduction which 
does not allow for fracture age assessment and might miss 
fractures without a secondary vertebral height reduction.

The AI-based lung lesion detection reveals a high 
number of additional results from which the majority  
(64 out of 81, 79%) was visually confirmed. Nevertheless, 
we would like to mention that harmless findings (such as 
granulomas, PFNLs or small post-inflammatory nodules) 
are often noticed by radiologists but not necessarily 
mentioned in the reports. Ruling out non-relevant AI-
findings is time-consuming. For that reason, it will be 
important to implement not only lesion detection but 
also malignancy assessment in the ongoing algorithm 
development. Also, traumatic lung lesions and respiratory 
artefacts (limited patient condition) overrepresented in 
patients of critical posttraumatic condition might hamper 
the AI-based discrimination of preexisting lung lesions. 
But even the applied algorithm identified two patients 
with initially missed lung lesions that have been classified 

as in recommendation to control according to Fleischner’s 
criteria assuming a low-risk profile of the patients; the 
largest lesion was measured at 8 mm.

AI-based aorta assessment yielded the most additional 
results: 34 out of 35 AI-findings were radiologically 
confirmed with none of these mentioned in the primary 
radiologists’ reports. In particular, three patients were 
identified with diameters of the ascending aorta exceeding 
the population’s mean by more than 50% and one patient 
had a diameter of the ascending aorta larger than 45 mm, 
which is considered as a lower threshold for therapeutic 
interventions for patients with additional risk factors (e.g., 
family history, history of dissection or aortic regurgitation) 
according to the 2014 European Society of Cardiology 
(ESC) guidelines (24). 

Limitations of our study refer to the scanning protocol 
and radiological re-assessment of AI findings. We quantified 
algorithm performance based on CT images acquired with 
a suboptimal scanning protocol, e.g., regarding aorta or 
heart assessment in non-ECG triggered scans and with 
contrast media hampering coronary plaque detection. 
Nevertheless, we compared with radiologists who equally 
have to deal with scanning parameters not optimized for 
the detection of specified secondary findings and in doing 
so, we also characterized the algorithm robustness in a 
clinical representative setting. Furthermore, radiological re-
assessment of AI findings for plausibility and classification 
was solely performed by one radiology resident (3 years 
of experience in thoracic imaging with >5,500 CT scans, 
ambiguous cases reviewed by a board-certified radiologist) 
in a proof-of-concept setting, which does not allow for 
inter-reader variability analysis. Nevertheless, reported AI-
findings have also been correlated with the initial reporting 
with at least one board-certified radiologist involved. Here, 
our approach is not able to distinguish between initially 
missed secondary findings and those findings that have not 
been mentioned due to the lack of relevance. 

In order to finally also address possible future AI 
applications in radiology: Our results support the idea that 
AI applications can assist the radiologist especially where 
detections, measurements and quantitative assessments are 
involved. The rapid and automatic detection of pathological 
lesions or pathological measurements is intended to 
reduce the rate of missed findings, but also enables quick 
triaging with regard to the radiologists’ reading list. Urgent 
cases can be presented to the radiologist in a prioritized 
manner after passing through AI software and thus, urgent 
medical interventions can be initiated earlier. The accurate 
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assessment of image data facilitated by AI also enables the 
establishment of quantitative imaging biomarkers. In this 
way, information that is contained in image data but has not 
been taken into account so far can be of great use for the 
patient and the treating physician (for example in the form 
of “lab-like results”).

Conclusions

In conclusion, we demonstrated in a retrospective proof-
of-concept setting the high potential of AI approaches 
to reduce the number of missed secondary findings in 
clinical emergency settings that require a very time-critical 
radiological reporting. In particular, the integration of 
different specialized algorithms in a single software solution 
is promising to avoid clinically too narrow AI applications. 
But also with regard to less urgent applications of medical 
imaging, it should be mentioned that especially non-
radiology clinicians might even take more benefit from AI-
assisted image analysis compared to anyway well-trained 
radiologists, e.g., in clinical settings without 24/7 radiology 
coverage or long turnaround times for radiology reporting. 
Although algorithms primarily need a high sensitivity 
to effectively reduce the number of initially missed CT 
findings, ongoing research should focus on algorithm 
improvements with regard to specificity to also reduce the 
number of FPs or non-relevant algorithm findings, which 
otherwise need to be manually ruled out by radiologists 
in a time-consuming procedure and also might affect 
radiologists’ clinical decision making.
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Supplementary

Algorithm module network architectures

Segmentation algorithm (heart, aorta, lung lobes, vertebrae)

The algorithm network architecture used for the anatomical segmentations (heart, aorta, lung lobes and vertebrae) 
corresponds to the architecture published and graphically illustrated by Yang et al. (please compare to Figure 1 of this 
paper) (16). The front part is a convolutional encoder-decoder network with feature concatenation, and the backend is deep 
supervision network through multi-level. Blocks inside deep image-to-image network (DI2IN) consist of convolutional and 
upscaling layers. 

Coronary plaque detection (Figure S1)

Lung lesion analysis (Figures S2,S3)

Figure S1 Architecture of the deep learning chest CT calcium detection model used for predicting the probability that each candidate voxel 
belongs to the coronary arteries. Inputs to the convolutional neural network are a cropped image of the heart and a co-registered territory 
map of the coronary arteries. Inputs to the fully connected neural network are spatial features. CT, computed tomography.

Figure S2 Block diagram for candidate generation.

Figure S3 Block diagram for false positive reduction.
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