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Background: The weightings of iterative reconstruction algorithm can affect CT radiomic quantification. 
But, the effect of ASiR-V levels on the reproducibility of CT radiomic features between ultra-low-dose 
computed tomography (ULDCT) and low-dose computed tomography (LDCT) is still unknown. The 
purpose of study is to investigate whether adaptive statistical iterative reconstruction-V (ASiR-V) levels affect 
radiomic feature quantification using ULDCT and to assess the reproducibility of radiomic features between 
ULDCT and LDCT.
Methods: Sixty-three patients with pulmonary nodules underwent LDCT (0.70±0.16 mSv) and ULDCT 
(0.15±0.02 mSv). LDCT was reconstructed with ASiR-V 50%, and ULDCT with ASiR-V 50%, 70%, 
and 90%. Radiomics analysis was applied, and 107 features were extracted. The concordance correlation 
coefficient (CCC) was calculated to describe agreement among ULDCTs and between ULDCT and LDCT 
for each feature. The proportion of features with CCC >0.9 among ULDCTs and between ULDCT and 
LDCT, and the mean CCC for all features between ULDCT and LDCT were also compared.
Results: Sixty-three solid nodules (SNs) and 48 pure ground-glass nodules (pGGNs) were analyzed. There 
was no difference for the proportion of features in SNs among ULDCTs and between ULDCT and LDCT 
(P>0.05). The proportion of features in pGGNs were highest for ULDCT70% vs. 90% (78.5%) and ULDCT90% 
vs. LDCT50% (50.5%). In SNs, the mean CCC for ULDCT90% vs. LDCT50% was 0.67±0.26, not different 
with that for ULDCT50% vs. LDCT50% (0.68±0.24) and ULDCT70% vs. LDCT50% (0.64±0.21) (P>0.05). In 
pGGNs, the mean CCC for ULDCT90% vs. LDCT50% was 0.79±0.19, higher than that for ULDCT50% vs. 
LDCT50% (0.61±0.28) and ULDCT70% vs. LDCT50% (0.76±0.24) (P<0.05).
Conclusions: ASiR-V levels significantly affected ULDCT radiomic feature quantification in pulmonary 
nodules, with stronger effects in pGGNs than in SNs. The reproducibility of radiomic features was highest 
between ULDCT90% and LDCT50%.
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Introduction

In recent years, the development of computational power 
and image feature extraction has led to the use of high-
throughput extraction of quantitative imaging features 
combined with different kinds of diagnostic models to 
assist clinical decisions, in a process called radiomics 
(1,2). Extensive research indicates that radiomics has 
shown promise in pulmonary nodule characterization, 
histopathologic staging, prognostic analysis, and recognition 
of gene mutations (3-7).

At present, chest low-dose computed tomography 
(LDCT) is the recommended modality for screening 
non-small cell lung cancer (NSCLC) (8). In addition 
to monitoring the size of pulmonary nodules, LDCT 
is also widely used in radiomics analysis (9-11). Owing 
to developments in computed tomography, the wide 
applicability of iterative reconstruction (IR) algorithms has 
enabled the realization of ultra-low-dose CT (ULDCT), 
which has a lower radiation dose than LDCT. The radiation 
dose of ULDCT is <0.2 mSv, which is comparable with the 
dose of chest radiography (12-14). As a third-generation IR, 
adaptive statistical iterative reconstruction-V (ASiR-V) has 
the ability to reduce image noise and is widely adopted in 
the image reconstruction of ULDCT (15,16).

Recently, there have been many reports on the reliability 
of ULDCT for screening NSCLC, with some researchers 
even recommending replacing LDCT with ULDCT for 
NSCLC screening (17-20). Nevertheless, these studies 
focused on conventional image diagnosis by the naked 
eye and ignored the ULDCT radiomic quantification in 
pulmonary nodules in vivo. The reproducibility of CT 
radiomic features between LDCT and ULDCT remains 
unknown. Moreover, some studies have shown that 
changing the weightings of IR can affect the reproducibility 
of CT radiomic features (21). However, there are only a 
few studies on the effect of IR algorithms on CT radiomic 
quantification considering the high number of commercial 
IR algorithms that are composed of different models  
(22-26). The effect of changing the weightings for different 
IR algorithms on the reproducibility of CT radiomic 
features needs to be investigated further.

Therefore, this study aimed to evaluate the variability 
of quantification of radiomic features computed using 
ULDCT reconstructed with different ASiR-V levels and 
investigate the effect of ASiR-V levels on the reproducibility 
of CT radiomic features between ULDCT reconstructed 
with different ASiR-V levels and LDCT, by assessing the 

agreement of CT radiomic features (including first-order 
statistical, textural, and structural features) among ULDCTs 
with different ASiR-V levels as well as the agreement 
between ULDCT and LDCT in pulmonary nodules.

Methods

Participants

From August 2019 to January 2020, we enrolled patients 
who underwent LDCT for pulmonary nodule follow-up 
in our radiology department. The inclusion criteria were 
as follows: (I) age ≥18 years and body mass index (BMI) ≤ 
35 kg/m2, (II) acceptable diagnostic image quality of LDCT, 
(III) ≤5 pulmonary nodules without calcification, and (IV) 
solid nodules (SNs) and pure ground-glass nodules (pGGNs) 
with diameters of 4–15 mm (the diameter was calculated 
as the mean of the longest diameter and perpendicular 
diameter of a nodule) (27). The exclusion criteria were as 
follows: (I) LDCT with the tube voltage of 100 kV, (II) 
patients with diffuse consolidation and/or other diseases, 
making pulmonary nodules unevaluable, and (III) patients 
with pulmonary part-solid nodules (PSNs).

There were 85 patients in the preliminary study. Among 
them, twenty-two patients were excluded (three patients 
with poor image quality of LDCT, five patients with PSNs 
and fourteen patients scanned with tube voltage of 100 kV). 
Finally, our study population consisted of 63 patients [14 
men, 49 women; mean age, 55.0±13.2 (range, 23–82) years; 
mean BMI, 22.67±2.95 (range, 17.5–31.14) kg/m2].

This study was approved by the institutional review 
board of our department, and informed consent was 
obtained from the participants.

CT acquisition and reconstruction

All CT scans were performed on a revolution CT scanner 
(GE Healthcare, Milwaukee, WI, USA) and conducted 
with the patient in a deep inspiratory breath-hold. Patients 
were scanned using a conventional non-enhanced LDCT 
protocol, immediately followed by ULDCT. The interval 
between the two protocols was <1 min. All scans were used 
in helical mode, with a scan range from the costophrenic 
angle to the pulmonary apex.

The LDCT dataset was obtained with a collimation of 
64×0.625 mm, beam pitch of 0.984:1, Assist tube voltage 
of 120/100 kV, Smart mA with a noise index of 14.1 HU 
(min/max mA, 50/680), and gantry rotation time of 0.28 s. 
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Figure 1 Process of nodule segmentation for both solid nodule and pure ground-glass nodule. ULDCT50%, ultra-low-dose CT (ULDCT) 
with ASiR-V 50%; ULDCT70%, ULDCT with ASiR-V 70%; ULDCT90%, ULDCT with ASiR-V 90%; LDCT50%, low-dose CT (LDCT) 
with ASIR-V 50%.

LDCT50%

LDCT50%

LDCT50% ULDCT50% ULDCT70% ULDCT90%

ULDCT50% ULDCT70% ULDCT90%LDCT50%

Identical parameters were used for ULDCT, except that 
the tube voltage was fixed at 120 kV and the tube current 
was Smart mA with a noise index of 28 HU. LDCT images 
were reconstructed with ASiR-V 50%, which was described 
as LDCT50%. ULDCT images were reconstructed with 
ASiR-V 50%, 70%, and 90%, which were described as 
ULDCT50%, ULDCT70%, and ULDCT90%, respectively. 
ASiR-V levels used for the image reconstruction of ULDCT 
were based on the results of our previous study (published 
in Chinese domestic core journal). All images were obtained 
using a slice thickness of 1.25 mm with an increment of  
1.25 mm. The image matrix was 512×512 pixels.

The mean CT dose index volume (CTDIvol) and dose-
length product (DLP) for LDCT were 1.4±0.33 mGy and 
49.83±11.76 mGy·cm, respectively. The mean CTDIvol 
and DLP for ULDCT were 0.33±0.16 and 11.05±1.7 mGy 
cm, respectively. The effective dose (ED) was calculated 
by multiplying the DLP with a conversion coefficient k of  
0.014 mSv/mGy/cm (28).

Nodule segmentation and radiomic feature extraction

All patient identifiers (including name, age, sex, and medical 
record number) were removed from the images. Images 
were presented with a fixed window center of −600 HU 
and width of 1,600 HU. Image quality of LDCT was 

assessed by a radiologist (Doctor A with 5 years’ experience 
in radiology). Images with moderate or mild artefacts 
which do not affect diagnosis were seen as acceptable. 
Pulmonary nodule segmentation was performed by two 
radiologists (Doctor B with 6 years’ experience in chest 
CT and Doctor C with 8 years’ experience) in consensus 
using a semiautomatic segmentation and radiomic feature 
extraction tool (RadCloud version 3.0; Huiying Medical 
Technology Co., Ltd.). If the discrepancy of volumes of 
interest drawn by two doctors was more than 5% (29), the 
segmentation performed by a third reader (Doctor D with 
26 years’ experience in chest CT) was chosen. The process 
of nodule segmentation for both SNs and pGGNs is shown 
in Figure 1.

After nodule segmentation, a total of 107 radiomic 
features from 3D data were extracted, including histogram, 
texture and structural features. They included 18 first-order 
statistical features (histogram), 75 texture features [gray-
level co-occurrence matrix (GLCM), gray-level dependence 
matrix (GLDM), gray-level run length matrix (GLRLM), 
gray-level size zone matrix (GLSZM), neighboring gray-
tone difference matrix (NGTDM)], and 14 structural 
features (Shape-3D). All of these features were directly 
extracted from the original images without filtering and can 
intuitively reflect original information of images. A detailed 
description of all these 107 features is shown in Table S1.

https://cdn.amegroups.cn/static/public/QIMS-20-932-supplementary.pdf
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Figure 2 Agreement of all features between different groups of ultra-low-dose CT (ULDCT) reconstructed with different ASiR-V levels in 
both solid nodule (SN) and pure ground-glass nodule (pGGN).

Agreement of features between different groups of ULDCT in both SN 
and pGGN
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Statistical analysis

Statistical analyses were performed using SPSS version 26.0 
(IBM) and MedCalc version 19.0.7. P<0.05 (two-sided) was 
considered significant. All radiomic features were regarded 
as continuous in nature. Continuous variables are reported 
as mean ± standard deviation, and categorical variables as 
frequencies or percentages. The concordance correlation 
coefficient (CCC) (30) was calculated to describe the 
agreement among ULDCTs with different ASiR-V levels 
and the agreement between ULDCTs with different 
ASiR-V levels and LDCT for each feature. CCC values 
of >0.99, 0.95–0.99, 0.91–0.95, and <0.90 denoted “almost 
perfect”, “substantial”, “moderate”, and “poor” agreement, 
respectively (31). Chi-square statistics were used to compare 
differences in the proportion of features with CCC >0.9 
among ULDCTs with different ASiR-V levels and between 
ULDCTs with different ASiR-V levels and LDCT. A paired 
sample t-test was used to compare differences in CCC 
values for all features between ULDCTs with different 
ASiR-V levels and LDCT. The 95% confidence intervals of 
mean CCC values were also calculated.

Results

A total of 111 nodules were analyzed, including 63 SNs and 
48 pGGNs. The mean diameter of SNs was 5.2±1.5 (4.0–

10.4) mm, and that of pGGNs was 6.1±1.8 (4.0–12.0) mm. 
The ED of ULDCT (0.15±0.024 mSv) was 78.6% lower 
than that of LDCT (0.7±0.16 mSv).

Agreement between ULDCTs with different ASiR-V levels 
for all features

The agreement between ULDCTs with different ASiR-V 
levels for all features in both SNs and pGGNs is shown in 
Figure 2. In SNs, the proportion of features with CCC >0.9 
for ULDCT50% vs. 70%, ULDCT50% vs. 90%, and ULDCT70% vs. 90%  
was 29.9%, 25.2%, and 19.6%, respectively. There was no 
obvious difference among them (P=0.220).

In pGGNs, features with CCC >0.9 in ULDCT70% vs. 90%  
accounted for 78.5% of all features, significantly higher 
than that of ULDCT50% vs.70% (34.6%) and ULDCT50% vs. 90% 
(26.2%) (P<0.001). There was no statistical difference in the 
proportion between ULDCT50% vs. 70% and ULDCT50% vs. 90% 
(P=0.181).

Agreement between ULDCTs with different ASiR-V levels 
and LDCT

The agreement between ULDCTs with different ASiR-V 
levels and LDCT for all features in both SNs and pGGNs 
is shown in Table 1. In SNs, the number of features with 
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Table 2 Comparison of proportions of features with CCC >0.9 between ULDCT with different ASiR-V levels and LDCT 

ULDCT50% vs. LDCT50% ULDCT70% vs. LDCT50% ULDCT90% vs. LDCT50% χ2-value P value

SN 18.7% (20/107) 13.1% (14/107) 20.6% (22/107) 2.250 0.325

pGGN 21.5% (23/107)* 46.7% (50/107) 50.5% (54/107) 22.227 <0.001

ULDCT, ultralow-dose computed tomography; LDCT, low-dose computed tomography; CCC, concordance correlation coefficient; 
ULDCT50%, ULDCT with ASiR-V 50%; ULDCT70%, ULDCT with ASiR-V 70%; ULDCT90%, ULDCT with ASiR-V 90%; LDCT50%, LDCT with 
ASiR-V 50%; SN, solid nodule; pGGN, pure ground-glass nodule. *The result of this group was different from the other two groups.

Table 1 Agreement between ULDCT and LDCT for all features in both SN and pGGN

Variable Nodule type
ULDCT50% vs. LDCT50% ULDCT70% vs. LDCT50% ULDCT90% vs. LDCT50%

Poor Not poor Poor Not poor Poor Not poor

First-order feature SN 16 2 15 1 13 3

pGGN 15 3 8 10 7 11

Shape feature (3D) SN 6 8 8 6 5 9

pGGN 7 7 5 9 6 8

GLCM SN 21 3 22 2 21 3

pGGN 20 4 16 8 14 10

GLDM SN 11 3 12 2 10 4

pGGN 10 4 5 9 6 8

GLRLM SN 13 3 15 1 14 2

pGGN 14 2 11 5 9 7

GLSZM SN 15 1 14 2 15 1

pGGN 14 2 10 6 7 7

NGTDM SN 5 0 5 0 5 0

pGGN 4 1 2 3 2 3

ULDCT, ultra-low-dose computed tomography; LDCT, low-dose computed tomography; SN, solid nodule; pGGN, pure ground-glass 
nodule; ULDCT50%, ULDCT with ASiR-V 50%; ULDCT70%, ULDCT with ASiR-V 70%; ULDCT90%, ULDCT with ASiR-V 90%; LDCT50%, LDCT 
with ASiR-V 50%; GLCM, gray-level co-occurrence matrix; GLDM, grey-level difference matrix; GLRLM, gray-level run length matrix; 
GLSZM, grey-level size-zone matrix; NGTDM, neighborhood grey-tone difference matrix; poor represents poor agreement between this 
group and LDCT; not poor represents not poor agreement between this group and LDCT.

different agreements between ULDCT50% and LDCT50% 
was 87 for poor agreement, and 20 for not poor agreement. 
Between ULDCT70% and LDCT50%, there were 93 features 
with poor agreement, and 14 with not poor agreement. 
Between ULDCT90% and LDCT50%, the number of features 
was 85 for poor agreement, and 22 for not poor agreement.

In pGGNs, the number of features with different 
agreements between ULDCT50% and LDCT50% was 84 for 
poor agreement, and 23 for not poor agreement. Between 
ULDCT70% and LDCT50%, there were 57 features with 
poor agreement, and 50 with not poor agreement. Between 

ULDCT90% and LDCT50%, the number of features was 54 
for not poor agreement, and 53 for poor agreement.

Proportion of features with CCC >0.9 between ULDCTs 
with different ASiR-V levels and LDCT

The comparison of proportions of features with CCC 
>0.9 between ULDCTs with different ASiR-V levels and 
LDCT is shown in Table 2. In SNs, there was no statistical 
difference for the proportion of features with CCC >0.9 
between ULDCTs with different ASiR-V levels and LDCT 
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Table 3 Comparison of mean CCC values for the agreement of all features between ULDCT with different ASiR-V levels and LDCT

Variable Group 1 Group 2 Group 3 t-value P value

Mean CCC of SN  
(95% CI)

0.68 (0.64–0.73)  0.64 (0.60–0.68) 0.67 (0.62–0.72) −5.997a/−0.523b/1.695c <0.001a/0.602b/0.093c

Mean CCC of pGGN 
(95% CI)

0.61 (0.55–0.66) 0.76 (0.72–0.81) 0.79 (0.75–0.82) 11.489a/10.166b/1.992c <0.001a/<0.001b/0.0489c

ULDCT, ultralow-dose computed tomography; LDCT, low-dose computed tomography; SN, solid nodule; pGGN, pure ground-glass 
nodule; CCC, concordance correlation coefficient; CI, confidence interval; Group 1, agreement between ULDCT with ASiR-V 50% vs. 
LDCT with ASiR-V 50%; Group 2, agreement between ULDCT with ASiR-V 70% vs. LDCT with ASiR-V 50%; Group 3, agreement between 
ULDCT with ASiR-V 90% vs. LDCT with ASiR-V 50%. aPaired samples t-test for Group 1 and Group 2; bPaired samples t-test for Group 1 
and Group 3; cPaired samples t-test for Group 2 and Group 3.

(P=0.325). In pGGNs, the proportion of features with CCC 
>0.9 between ULDCT70% and LDCT50% was almost the 
same as that between ULDCT90% and LDCT50% (P=0.584). 
The two proportions above were all higher than that 
between ULDCT50% and LDCT50% (P<0.001).

Comparison of mean CCC values between ULDCTs with 
different ASiR-V levels and LDCT

The comparison of mean CCC values between ULDCTs 
with different ASiR-V levels and LDCT in both SNs and 
pGGNs is shown in Table 3. In SNs, the mean CCC for 
the agreement between ULDCT90% and LDCT50% was 
0.67±0.26, which was not statistically different from that 
for ULDCT50% vs. LDCT50% (0.68±0.24) and that for 
ULDCT70% vs. LDCT50% (0.64±0.21) (P>0.05). However, 
the mean CCC between ULDCT50% and LDCT50% was 
slightly higher than that between ULDCT70% and LDCT50% 
(P<0.001).

In pGGNs, the mean CCC for the agreement between 
ULDCT90% and LDCT50% was 0.79±0.19, which was higher 
than that for ULDCT70% vs. LDCT50% (0.76±0.24) and 
that for ULDCT50% vs. LDCT50% (0.61±0.28) (P<0.05). 
Additionally, the mean CCC between ULDCT70% and 
LDCT50% was also higher than that between ULDCT50% 
and LDCT50% (P<0.001).

Discussion

To our knowledge, this is the first study to show the effect 
of ASiR-V levels on the reproducibility of CT radiomic 
features between ULDCT and LDCT. In this study, we 
found that ASiR-V levels had a pronounced effect on 
the radiomic features of ULDCT (including first-order 
statistical, texture, and structural features), with pGGNs 

being more significantly affected than SNs. Meanwhile, the 
increase in ASiR-V levels could enhance the reproducibility 
of radiomic features between ULDCT and LDCT.

Because of the differences in acquisition parameters 
and reconstruction techniques of CT images, there was 
controversial about the reproducibility of CT radiomic 
features. In a study on the effect of reconstruction 
algorithms on CT radiomic features of pulmonary tumors, 
Kim et al. (32) found that 66.7 (4/6) first-order tumor 
intensity features and 75% (3/4) GLCM features were 
significantly influenced by the noise reduction strength 
of Sinogram Affirmed Iterative Reconstruction (SAFIRE) 
from level 3 to level 5. In the meantime, Prezzi et al. (21)  
investigated whether ASiR affected CT radiomic 
quantification in primary colorectal cancer and found that 
incremental ASiR levels determined a significant change in 
most statistical radiomic features. Our results also indicated 
that the ULDCT radiomic features would be strongly 
influenced by the change in ASiR-V levels in both SN and 
pGGN. There were at most 86 features with CCC<0.9 
in SN, and the number in pGGN reached at most 79, 
which was more than 73% of the total features. These 
studies indicated that CT radiomic quantification would be 
markedly influenced by the change in ASiR levels, similar to 
other IR algorithms such as SAFIRE and ASiR.

Except for reconstruction algorithms, the reproducibility 
of CT radiomic features will also be influenced by the 
radiation dose of CT scan (33-35). In a study on the 
influence of radiation dose and CT reconstruction setting 
on the reproducibility of CT radiomic features within the 
same patient, Meyer et al. (33) found that radiation dose 
had an obvious effect on the reproducibility of radiomic 
features, and the percentage of radiomic features deemed 
reproducible was reduced to 18% (19/106) from the dose 
level 100% to dose level 25%. Another study also found that 
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the reduction of radiation dose from 120mAs to 30mAs led 
to significant changes in 90% (18/20) radiomic features (34).  
In our study, the reproducibility of radiomic features 
between ULDCT50% and LDCT50% markedly decreased 
when the ED of ULDCT was reduced to approximately 
20% of LDCT. The mean CCC value for the agreement 
of all features between ULDCT50% and LDCT50% was 
approximately 0.68 in SN and 0.61 in pGGN. In addition, 
the proportion of features with CCC <0.9 was as high 
as 78.5% to 81.3%, which aligned with the results of 
the two studies above. All these results suggest that the 
reproducibility of radiomic features between ULDCT 
and LDCT will significantly decrease with a reduction in 
radiation dose.

It is well known that the noise of an image will increase 
with the reduction of radiation dose. In our study, the 
reduction of radiation dose also led to significant changes in 
the reproducibility of radiomic features between ULDCT 
and LDCT. However, some studies have indicated that 
increasing ASiR-V levels can lead to the reduction of image 
noise and improve the contrast-to-noise ratio (36). In view 
of this fact, we hypothesized that incremental ASiR-V 
levels may increase the reproducibility of radiomic features 
between ULDCT and LDCT.

In our study, we extensively assessed the agreement of 
radiomic features between ULDCT with different ASiR-V 
levels and LDCT in both SN and pGGN. In SN, the 
agreement of radiomic features between ULDCT and 
LDCT underwent a slight change when ASiR-V levels of 
ULDCT changed and the radiation dose of the two CT 
scans remained steady. Despite the ASiR-V level up to 90% 
from 50%, the magnitude of variation in the mean CCC 
value for the agreement of all features between ULDCT 
and LDCT was less than 0.04. In addition, the proportion 
of features with CCC >0.9 between ULDCT with different 
ASiR-V levels and LDCT did not strongly increase.

However, the agreement of radiomic features between 
ULDCT and LDCT increased greatly with increasing 
ASiR-V levels for ULDCT in pGGN. The mean CCC 
value for the agreement of all features between ULDCT90% 
and LDCT50% increased by 0.18 compared with that 
between ULDCT50% and LDCT50%, with a 30% increase. 
Although the ED of ULDCT was only 21.4% that of 
LDCT, the mean CCC value for the agreement of all 
features between ULDCT90% and LDCT50% was as high as 
0.79. In the meantime, the proportion of features with CCC 
>0.9 between ULDCT90% and LDCT50% was up to 50.5% 
compared with that between ULDCT50% and LDCT50%. 

For the obviously different effect between SN and pGGN, 
it may be explained that the lower intensity of pGGN was 
more sensitive to changes in image noise. In conclusion, 
the results of our study indicate that incremental ASiR-V 
levels, to some degree, can reduce the negative effect of 
dose reduction on the reproducibility of LDCT radiomic 
features and enhance the reproducibility of radiomic 
features between ULDCT and LDCT. Meanwhile, it 
has been recently shown that CT image reconstruction 
algorithms not only affect the reproducibility of radiomic 
features, but also affect the diagnostic performance of 
radiomics models (37). Thus, the difference in diagnostic 
performance of the radiomics models between LDCT and 
ULDCT may be narrowed to some extent by increasing 
ASiR-V levels to enhance the reproducibility of radiomic 
features.

This study had some limitations. First, levels of ASiR-V 
for ULDCT in our study only included 50%, 70%, and 
90%, which did not cover the range from 0% to 100%. 
Afadzi et al. (16) recommended that ASiR-V levels below 
70% may be appropriate for LDCT and ULDCT. Besides, 
levels of ASiR-V from 40% to 60% were recommended as 
the reconstruction levels for chest CT in another study (36).  
Thus, we chose the most likely levels of ASiR-V (including 
50%, 70%, and 90%), which may be used for LDCT and 
ULDCT in practical applications. Second, our study only 
focused on the comparison of reproducibility of radiomic 
features between ULDCT and LDCT in both SNs and 
pGGNs, not covering PSNs. Third, whether the difference 
in reproducibility of radiomic features between ULDCT 
and LDCT can affect the diagnostic performance of 
radiomics models based on images of two scans needs to 
be explored. Therefore, more types of pulmonary nodules 
need to be included and the effect of ASiR-V levels on 
the diagnostic performance of radiomics models based on 
images of ULDCT and LDCT should be investigated in 
the future.

Conclusions

In conclusion, we have confirmed that ASiR-V levels can 
also significantly affect the quantification of radiomics 
features computed at ULDCT in pulmonary nodules, 
similar to the radiation dose, and that pGGN was more 
sensitive than SN. The increase in ASiR-V levels could 
enhance the reproducibility of radiomic features between 
ULDCT and LDCT to some degree. In the future, higher 
ASiR-V levels may be taken when radiomics models 
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based on the ULDCT images are used in the diagnosis of 
pulmonary nodules.
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Table S1 Summary and brief description of all the 107 CT radiomic features extracted

Feature type Method Parameters

First order feature Describe the distribution of voxel 
intensities within the image region 
defined by the mask through 
commonly used and basic metrics

Interquartile Range, Skewness, Uniformity, Median, Energy, Mean Absolute 
Deviation, Entropy, Range, Root Mean Squared, Robust Mean Absolute 
Deviation, Minimum, Total Energy, Variance, Kurtosis, 10Percentile, Mean, 
Maximum, 90Percentile

Shape feature(3D) Describe the three-dimensional size 
and shape of the region of interest 
only on the non-derived image and 
mask

Voxel Volume, Flatness, Major Axis Length, Mesh Volume, Maximum 2D 
Diameter Slice, Sphericity, Surface Volume Ratio, Elongation, Minor Axis 
Length, Maximum 2D Diameter Row, Maximum 3D Diameter, Least Axis 
Length, Surface Area, Maximum2D Diameter Column

GLCM Describe the second-order joint 
probability function of an image region 
constrained by the mask

Joint Average, Sum Average, Joint Entropy, Cluster Shade, Maximum 
Probability, Idmn, Joint Energy, Contrast, Difference Entropy, Inverse 
Variance, Idn, Difference Variance, Cluster Prominence, Idm, Correlation, 
Auto correlation, Sum Entropy, MCC, Sum Squares, Imc2, Imc1, Difference 
Average, Id, Cluster Tendency

GLDM Quantify gray level dependencies, 
which are defined as the number of 
connected voxels within distance δ 
that are dependent on the center voxel 

Gray Level Variance, High Gray Level Emphasis, Dependence Entropy, 
Dependence Non Uniformity, Gray Level Non Uniformity, Small 
Dependence Emphasis, Small Dependence High Gray Level Emphasis, 
Dependence Non Uniformity Normalized, Large Dependence Emphasis, 
Large Dependence Low Gray Level Emphasis, Dependence Variance, 
Large Dependence High Gray Level Emphasis, Small Dependence Low 
Gray Level Emphasis, Low Gray Level Emphasis

GLRLM Quantify gray level runs, which are 
defined as the length in number of 
pixels, of consecutive pixels that have 
the same gray level value

Short Run Low Gray Level Emphasis, Gray Level Variance, Low Gray Level 
Run Emphasis, Gray Level Non Uniformity Normalized, Run Variance, Gray 
Level Non Uniformity, Long Run Emphasis, Short Run High Gray Level 
Emphasis, Run Length Non Uniformity, Short Run Emphasis, Long Run 
High Gray Level Emphasis, Run Percentage, Long Run Low Gray Level 
Emphasis, Run Entropy, High Gray Level Run Emphasis, Run Length Non 
Uniformity Normalized

GLSZM Quantify gray level zones which were 
defined as the number of connected 
voxels that share the same gray level 
intensity 

Gray Level Variance, Zone Variance, Gray Level Non Uniformity 
Normalized, Size Zone Non Uniformity Normalized, Size Zone Non 
Uniformity, Gray Level Non Uniformity, Large Area Emphasis, Small Area 
High Gray Level Emphasis, Zone Percentage, Large Area Low Gray Level 
Emphasis, Large Area High Gray Level Emphasis, High Gray Level Zone 
Emphasis, Small Area Emphasis, Low Gray Level Zone Emphasis, Zone 
Entropy, Small Area Low Gray Level Emphasis

NGTDM Quantify the difference between a gray 
value and the average gray value of its 
neighbours within distance δ

Coarseness, Complexity, Strength, Contrast, Busyness

GLCM, gray level co-occurrence matrix; GLDM, gray level dependence matrix; GLRLM, gray level run length matrix; GLSZM, gray level 
size zone matrix; NGTDM, neighbouring gray tone difference matrix.
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