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Background: In the clinical applications of optical coherence tomography angiography (OCTA), the 
repeated scanning and averaging method can provide better contrast with reduced speckle noises in the 
final results, which are useful for visualizing and quantifying vascular components with high accuracy, 
reproducibility, and reliability. However, the inevitable patient motion presents a challenge to this method. 
The objective of this study is to meet this challenge by introducing a 3D registration method to register 
optical coherence tomography (OCT)/OCTA scans for precise volume averaging of multiple scans to 
improve the signal-to-noise ratio (SNR) and increase quantification accuracy.
Methods: The proposed method utilized both rigid affine transformation and non-rigid B-spline 
transformation in which their parameters were optimized and calculated by the average stochastic gradient 
descent on OCT structural images. In addition, we also introduced a multi-level resolution approach to 
further improve the robustness and computational speed of our proposed method. The imaging performance 
was tested on in vivo imaging of human skin and eye and assessed by SNR, peak signal-to-noise ratio (PSNR) 
and normalized correlation coefficient (NCC). 
Results: Five subjects were enrolled in this study for obtaining in vivo images of skin and retina. The 
proposed registration and averaging method provided substantial improvements of the imaging performance 
in terms of vessel connectivity and signal to noise ratio. The increase of repeated volume numbers in the 
averaging improves all the metrics assessed, i.e., SNR, PSNR and NCC. An improvement of the SNR from 
10 to 40 dB after 10 repeated volumetric averaging was achieved. 
Conclusions: The proposed 3D registration and averaging method is effective in reducing speckle noises 
and suppressing motion artifacts, thereby improving SNR, PSNR and NCC metrics for final averaged 
images. It is expected that the proposed algorithm would be practically useful in better visualization and 
more reliable quantification of in vivo OCT and OCTA data, which would be beneficial to OCT clinical 
applications.
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Introduction

Optical coherence tomography (OCT) is a non-invasive 
and three-dimensional (3D) biomedical imaging technique 
that can provide cross-sectional images of a tissue sample 
with micrometer level resolution (1,2). OCT has been 
proven clinically useful in ophthalmology and is gradually 
becoming the gold standard for the diagnosis of many 
retinal diseases (1-4). Recently, OCT angiography (OCTA) 
has emerged as a novel non-invasive tool that can visualize 
functional blood vessels down to capillary levels in clinical 
settings (5-7). The capabilities of OCT and OCTA have 
made revolutionary impact on how ophthalmologists 
understand ocular disease pathologies as well as manage the 
therapeutic treatments. In addition to the rapid translation 
of OCTA into clinical ophthalmology, it has also been 
shown increasing promises in the fields of dermatology (8), 
otolaryngology (9), dentistry (10) and cardiology (11).

Despite their increasing popularity, OCT and OCTA 
still face several challenges in terms of the image quality 
for the purposes of providing more accurate quantification 
information. The motion artifacts and the inherent 
speckle noise from imaging process would significantly 
compromise its image quality, thus affect the accuracy and 
repeatability of microvasculature quantification (12,13). 
Previous method has suggested that multiple-volume or 
repeat B-scan averaging strategy can compensate motion 
artifacts and reduce speckle noises (5,14,15). This method 
requires spatial alignment of the repeated scans or volumes 
before performing averaging. In practice, subjects are often 
in motion, albeit small, during scanning. The motion, 
including but not limited to the respiration and heartbeat 
that are not inevitable, would introduce misalignment in 
the OCT raster scans during the process of averaging. 
Specifically, in dermatological OCT imaging, the inter-
frame motion artifacts and global movement would 
corrupt the alignment of the repeated successively acquired 
volumes. Thus, add the difficulties to perform multi-volume 
averaging to enhance the image quality and clarity for the 
purpose of quantification. Also, in ocular imaging, eye 
motions, such as a slow shift in gaze (drift), high frequency 
involuntary motions (tremor), or rapid eye movement 
(saccades), can all lead to disconnected vessels and introduce 
stripes of motion artifacts, affecting our ability to provide 
quantitative measures of retinal vascular complex. 

Therefore, the key to a successful averaging algorithm is the 
accurate spatial registration and alignment. Several methods 
have been proposed for 3D registration in OCT or OCTA 

for specially-designed system configurations (16) using post-
processing algorithms (17). Tracking and compensation 
strategies have also been proposed and utilized to mitigate 
the subject motion artifacts, such as with an aid of 
scanning laser ophthalmoscopy (18) and using wavefront  
sensors (19). However, these prior approaches usually 
either require expensive and sophisticated system setup, or 
increase the total acquisition time that inevitably reduces 
patient compliance. Other than the hardware approaches 
mentioned above, software processing algorithms can 
also be used to reduce speckle noise and motion artifacts. 
Generally, one can register multiple repeated OCT volumes 
to mitigate the above mentioned issues and enhance the 
signal to noise ratio (SNR). Ideally, the OCT signals 
sampled at the same spatial location with sufficient time 
interval are correlated. As a result, the averaged signal 
of repeatedly sampled signals improves the SNR by 
suppressing the random fluctuating noise while maintaining 
the true signals (20). Potsaid et al. (21) proposed a method of 
two dimensional (2D) registration on cross-sectional images 
to correct the volumetric motion, but it is computationally 
cost on 3D images. In addition, this method was only 
designed for correcting motion between slow scans. Kraus 
et al. (22) introduced a method with orthogonal scanning 
pattern that uses intensity based registration to minimize 
the motion artifacts in the OCT system. This method 
combines the information of fast and slow scans to register 
and acquire the artifact-free images. Although it has been 
adopted in commercial OCT systems (e.g., Optovue SD-
OCTA machine), it still suffers from residual inter-frame 
artifact when large inter-volume mismatch exists. The 
requirement of a special scanning pattern for this algorithm 
also increases the difficulties for it to be adapted by other 
commercial OCT systems. 

Moreover, layer segmentation (23-26) or feature 
extraction approaches (27) have also been presented to 
guide the volumetric registration, such methods can correct 
global displacement of each sub-image or align the image 
based on the layer contour before co-registration. However, 
the robustness of such algorithms may decrease when the 
pathological cases are dealt with, and they tend to induce 
unpredictable registration errors. Therefore, there is still a 
demand to develop a registration and averaging method that 
can perform universal 3D registration on repeated OCT 
volumes using reasonable computation resources, without 
a need to modify the hardware configurations of current 
commercial OCT systems. 

In this study, we propose a robust and comprehensive 
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approach to register 3D OCT and OCTA volumes for 
speckle noise reduction, where successive OCT volumes 
are used to obtain the affine and B-spline transformations, 
upon which to obtain the coordinates of OCTA volumes for 
later co-registration and averaging. We demonstrate that 
this method can significantly increase the SNR of images 
and suppress motion induced artifacts, through testing the 
algorithm on the datasets acquired from human retina and 
human skin in vivo.

Methods

The workflow of 3D registration and averaging 

In the registration model below, the images that are 
acquired when the sample is in motion are defined as IM and 
the fixed image that acts as the reference is referred to as IF. 
For any pixel located at x, the spatial transformation matrix 
T that aligns IF to IM is defined as:

( ) ( ) T x x u x= + 	 [1]

where u(x) is the amount of motion, or the displacement due 
to global or local motion between coordinates. Note that 
the spatial location can be of (x,y,z) coordinates in 3D, here 
we use x for simplicity. Generally speaking, the intensity-
based registration is a convex optimization problem that can 
be represented by the equation below, to obtain the correct 
spatial transformation. 

( ) ˆ ; ,F MT argmin C T I I= μ 	 [2]

In Eq. [2], T̂  represents the optimized transformation 
under the cost function C, which measures the deformation 
between the reference and registered image. Thus, the goal 
of image registration is to search for the best parameters 
vector μ for the transformation Tμ from IF to IM with a 
minimum cost. The number of parameters in vector μ 
defined by the transformation matrix T. There are 12 
parameters in vector μ for affine transformation and (Px × 

Py × Pz) × 3 parameters for B-spline transformation, where 
Px,Py, Pz are the number of pixels in each dimension divided 
by the designed grid, which is 16 pixels in this study. 

The cost function C here is formed by the mutual 
information (MI) term with the penalty term, as:

[ ] [ ]; , ;F M MC I I MI P Iµ α β µ= − + 	 [3]

where α, β are user-defined parameters, with empirically 
set as 1.0 and 0.1 respectively. P[μ;IM] is a penalty term 
to reduce overfitting and to constrain the transformation 

matrix Tμ, which is modified from the rigidity penalty 
method introduced by Staring et al. (28). MI is defined as 
below: 
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where p is the discrete joint probability, and pF and pM are 
the marginal discrete probabilities of the reference and 
moving images, obtained by summing p over moving 
images m and the reference image f, respectively. The joint 
probability p is estimated using B-spline Parzen window 
described by Thévenaz (29). The MI depends on fewer 
assumptions of data and can provide better stability for 
optimizations comparing L1, the Manhattan distance or L2, 
the Euclidean distance. 

In the optimization of the parameters vector μ for the 
cost function, we employed a method called adaptive 
stochastic gradient descent (ASGD) method. This algorithm 
randomly shuffles the datasets to calculate the gradients, 
updating the parameters with less variance to produce a 
more stable convergence. It also requires fewer parameters 
to be set and tends to be more robust by its adaptive step 
size. Mathematically, the ASGD can be represented as: 
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( )( )
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where μk denotes the registration parameter vector for 
optimization, γ(tk) denotes the step size and gk denotes 
the gradient of the cost function at step k. The learning 
rate is defined by a monotone decreasing function γ (30) 
and controlled by the incremental variable tk. In the 
determination of tk, S represents the sigmoid function to 
normalize the inner products of the gradients of previous 
two steps (30). If the directions of the gradients gk, gk–1 are 
same, the positive inner product of gradients will result to 
a small tk+1 and a larger step size γ(tk+1). Eq. [5] illustrates 
that the ASGD method implements an adaptive step size 
mechanism through adjusting the independent variable tk of 
step size γ(tk). The optimization starts with zero initiation 
of μ0, and the images are further sampled for calculating the 
cost function. At next step, μ1 is updated according to Eq. [5].  
Then the algorithm will update the μk iteratively until 
reaching the predefined step number, which was set as 
250 in this study. To summarize, the ASGD method  
{Eq. [5]} was used to update the transformation vector μ and 
to minimize the cost function Eq. [3] until desired vector μ 
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is found.
We utilized two approaches in our registration model. 

Firstly, we employed both affine and B-spline models 
to obtain the transformation matrix T. The affine 
transformation was designed to correct translation, scaling, 
shear, and rotation of the images, also known as global 
correction of relatively large movement (23,24). Afterward, 
we used the B-spline transformation to correct the free-
form deformation, also known as irregular movement 
and local deformation correction (23,24) as shown in 
Figure 1. Secondly, we performed registration on different 
resolution levels iteratively in order to refine and minimize 
misalignments between 3D volume scans. Specifically, a 
range of Gaussian kernels were used to down sample OCT 
scans in a particular fashion to reduce the complexity and 
the amount of data. As illustrated in Figure 2, the original 
OCT scan R0 with highest resolution was down sampled to 
R1 and then further down sampled to R2, R3, and so on (31).  
The image size and resolution were decreased to form 
the image pyramids. The down sampling Gaussian kernel 
σ(x,y,z) was set with a size of [2,4,8] for the image pyramids 
and this was specifically designed to match the anisotropic 
motion patterns in OCT scans. In σ(x,y,z), z corresponds to 

the A-line direction, x corresponds to the B-scan direction 
(fast scan) and y corresponds to the C-scan direction (slow 
scan). The A-line acquisition speed is the fastest, with the 
least motion artifacts, and thus, down sampled the most 
(8 times). The C-scan acquisition speed is the slowest, 
with the highest probability to have motion artifacts, and 
consequently, down sampled the least (2 times). The down-
sampling for the B-scan is in between. For each image 
pyramids, the registration process was first conducted on 
R3 as the optimization had better convergence on blurred 
images. Then the resulted parameters from R3 were applied 
and mapped back on R2-R0, as indicated by the orange 
arrows of Figure 2. Specifically, the affine transformation 
calculated by R3 was firstly applied onto R2 globally, then 
the B-spline transformation calculated by R3 on each 
grid was applied onto corresponding pixels on R2. The 
registration on R2 was then conducted on the modified 
images with less movements and its results were further 
applied to R1 and R0. The registration and mapping 
process were iteratively performed until R0 was reached.

After registration, the registered image was weighted and 
averaged with the reference image, which was then assigned 
as the new reference image for next round of registration 

Figure 1 An illustration of the correction of affine and B-spline registration on 2D images. (A) is the reference image and (B) is the moving 
image. (C,D) are the images registered by affine and B-spline transformation, respectively. (E) is the final averaged image. The mesh (F-H) 
visualize the deformation that corresponding to (B-D). The affine transformation corrects the global motion and the B-spline improves the 
local alignments.

A B C D

GE HF
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as it has better contrast. The weighted averaging process 
for nth image is defined by the following rules, as shown in 
Figure 3.

, 1 ,

, 1 , 2 ,ave n n Fix n n Reg n

Fix n ave n

I w I w I
I I+ =

= +
	 [6]

For nth registration, the designed weights ensure each 
individual image has the same weight 1⁄n in the final 

averaged results. We set the wn1=n/(n+1) as the weight for 
the reference image and the wn2=1/(n+1) as the weight for 
the registered image. IFix,n, IReg,n represent the corresponding 
reference image and registered image, respectively. In our 
study, all registrations were conducted on the OCT scans. 
Since OCT and OCTA datasets share the same spatial 
coordinates, transformations calculated from the OCT scans 
were stored and directly applied to OCTA scans as shown 
by the dash arrows of Figure 3. The implementation of the 

Figure 2 The illustration of anisotropic deformation and multi-resolution down-sampling approach using 3D OCT retinal image a(x,y,z) 
as an example due to patient movement during image capture. (A) Illustration of the resulting deformation of 3D retinal image, a(x,y,z), at a 
certain depth slice of z, a(x,y). (B) B-frame at fast scan axis, a(x,z), with minimal distortion. (C) B-frame along slowest scan axis, a(y,z), with 
severe disortion due to the longer time interval. (D) The anisotropic down sampling and multi-resolution approach for 3D registration. 
R0 is the original resolution volume and R1-R3 are down sampled volumes. The low resolution volumes are downsampled from higher 
resolution images as indicated by the blue arrows. The registration matrices are applied to high resolution volumes, as shown by the orange 
arrows. (E) The anisotropic Gaussian kernel is used to acquire the low resolution volumes, which is largely dependent on the imaging speed 
of the system, where the kernel ellipse is most elongated at the fastest direction (i.e., A-scan) and most compressed at the slowest direction (i.e., 
C direction). X denotes the fast scan axis (B-scan), Y the slowest axis (C-scan), and Z the fastest scan axis (A-scan). 
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registration program was based on MATLAB (MathWorks, 
R2016a) and an open source project Elastix (32).

Data acquisition 

Two datasets were collected to test the proposed algorithm: 
human skin data using a laboratory built SS-OCT 1,310 
nm system (33) and human retina data acquired by a 1,050 
nm swept-source OCT angiography (SS-OCTA) (PLEX® 
Elite 9000, Carl Zeiss Meditec, Dublin, CA, USA). Both 
systems have an imaging speed of 100 kHz. The subject 
imaging followed protocols reviewed and approved by 
the Institutional Review Board of Medical Sciences 
Subcommittee at the University of Washington, Seattle. 
The tenets of the Declaration of Helsinki and Health 
Insurance Portability and Accountability Act were followed. 
Informed consent forms were obtained from all subjects 

before participation.
For the human skin data acquired by the laboratory 

system, 10 consecutive OCT volumes with 9×9 mm 
scanning pattern were acquired from each subject. Each 
volume had a total of 2,400 B-scans with four repeated 
B-scans at each spatial B-location for the purpose of OCTA. 
Each B-scan had 600 A-scans. No tracking mechanism was 
employed in this system and the acquisition of 10 volumes 
took ~180 seconds for each subject in total. For the human 
retina data acquired by the commercial SS-OCTA device, 
22 repeated 6×6 mm volume scans were acquired from 
the right eye of each subject. Of these 22 volume scans, 
11 scans were acquired centered at the fovea and 11 scans 
were acquired ~9 mm inferonasally away from the fovea. 
Each scan takes about ~6 seconds and short breaks were 
taken between scans. The Fastrac motion tracking system 
was employed to minimize the eye motion during scanning, 

Figure 3 The Workflow of 3D volumetric registration. For the consecutive 4 scans, the first OCT and OCTA volumes are set as the 
reference volumes as Ref1 and the following scans Mov1, Mov2, Mov3 are to be registered. Firstly, the 1st registration is first to register 
the Mov1 to the Ref1 as illustrated in the right-side box, where (I) the affine transformation matrix is generated to correct the bulk motion 
between Ref1_Stru with Mov1_Stru; and (II) the B-spline transform is calculated between Ref1_Stru and Reg1_A_Stru to correct the local 
movements. The transformation matrices from the structural volumes are directly applied to the corresponding flow volumes. Then, the 
average volume Ave1 is calculated from Ref1 and Reg1 by the weight W11=1⁄2,W12=1⁄2. Secondly, for the 2nd registration, the new reference 
volume is assigned as Ave1 and the registration procedures are similar to the first step. The weights W21, W22 are calculated from Eq. [5], i.e., 
2/3, 1/3. Thirdly, the 3rd Registration is similar to step 2, with the updated new weights W31=3⁄4,W32=1⁄4.
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and the Track to Prior function was turned on to acquire 
repeated scans at the same location (34). For both sets 
of data, the ultrahigh sensitive optical microangiography 
(OMAG) (35) algorithm was used to generate OCTA 
volumes and the subpixel registration approach was 
applied to compensate the displacement between adjacent  
B-scans (36). After OCTA volumes were generated, the 
proposed registration algorithm was employed to register 
and average both OCT and OCTA data. After obtaining 
the average OCTA data, a semi-automatic segmentation 
software (37) was used to extract slabs of interest to 
demonstrate the quality of the resulting images. Human 
retina data were segmented into whole retina slab and 
choriocapillaris slab, following protocols of previously 
published study (38). Human skin data were segmented into 
different slabs for better visualization, following protocols 
of previously published study (8). After segmentation, the 
maximum intensity projection (MIP) was used to generate 
en face images. 

Registration evaluation

To evaluate the performance of resulting registration and 
subsequent averaging, three parameters were used: peak 
signal-to-noise ratio (PSNR), normalized correlation 
coefficient (NCC), and SNR. The PSNR measures the 
quality of single scans compared with the high-quality 
averaged images. It is defined as: 

( )

2

10
2

10 log 1  
I

H SL M N

MAXPSNR
I I

lmn

= ×
−∑ ∑ ∑

		 [7]

where l,m,n represent the size of the volume, and I 
represents the intensity of data. The averaged high-quality 
image was picked as the reference image IH and the single 
scan image was denoted as image IS. MAXI is the maximum 
possible pixel value of the image. The whole 3D OCT 
volumes were used to quantify PSNR.

The NCC measures the similarity of images by assuming 
a linear relationship between the intensity values of the 
reference image and the moving image. It evaluates how 
well the volumes are aligned. The NCC is defined as: 

( )
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	 [8]

The Tμ (x) represents the registered image IF that is 

suspected of motion. FI and MI  are the mean of reference 
image and moving image, respectively. The whole 3D OCT 
and OCTA volumes were used to quantify NCC.

The SNR is defined by the ratio of mean to standard 
deviation of the signal:

signal

noise

SNR
µ
σ

= 	 [9]

where μsignal is the mean of OCT signal and σnoise is the 
standard deviation of the background noise. The regions 
of tissues around the focus position were manually selected 
as the signal and the regions of no tissues were manually 
selected as noise floor. Theoretically, the mean of signals 
from individual samples improves linearly to the repetition 
N with the standard deviation inversely related to N . 
Therefore SNR should increase linearly to N  (15). 

Results 

A total of five healthy subjects with a normal ocular history, 
no visual complains, and no identified optic disc, retinal, or 
choroidal pathologies on examination were recruited for 
human retina imaging and a total of five healthy volunteers 
were imaged for human skin imaging. To evaluate the 
performance of proposed algorithm, we examined the cost 
function at 4 resolution levels during the optimization, 
inspected visual appearance of the averaged images, and 
calculated quantitative metrics from averaged images 
describing image quality.

As explained in the Methods section, a cost function is 
commonly used to evaluate the differences of the reference 
(fixed) image and the image that is to be registered. This 
function indicates how well the registration algorithm 
performs. Figure 4 presents how the cost function changes 
with the number of iterations during optimizing the 
transformation parameters. Ideally, the value of the cost 
function should decrease with the increase of iterations 
and eventually reach a plateau, from where further increase 
of iteration would not benefit more the optimization.  
Figure 4A demonstrates how the cost function varies with 
the number of iterations for the affine transformation 
when the optimization was performed on 4 different 
resolution levels (R3-R0). The cost function decreases 
relatively fast on the low resolution level (R3), and reaches a 
plateau at about 100 iterations which would deliver similar 
performance to that of higher resolution levels (R0-R2). 
This means the optimal affine registration parameters can 
be obtained on the low resolution level images. Figure 4B 
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demonstrates how the cost function changes for the B-spline 
transformation at different resolution levels (R3-R0). The 
cost decreases relative slowly, but still most significantly in 
the low resolution level (R3) images. However, unlike in the 
affine transformation, the value of the cost function is kept 
on decreasing at higher resolution level images (R1 and 
R2). That indicates the local movements are progressively 
aligned by the B-spline registration during the process. The 
parameter space for affine transformation is much smaller 
than the B-spline transformation, thus the cost function 
curves in Figure 4A converges for fewer iterations and 
on lower resolution level images than in Figure 4B. The 
appearance of cost function provides ground for selecting 
the number of iterations and the levels of down sampling 
during optimization. If the cost functions are converged on 
the lowest resolution level and keep same at higher levels 
(like Figure 4A), then the motion of images are not severe. 
The users can set less iterations and down sampling levels 
so that the optimization can speed up. Otherwise users can 
keep the default settings for better registration. 

The averaged images suggest its effectiveness for noise 
reduction and contrast enhancement. Figure 5 shows an 
example of single (Figure 5A,C) and averaged (Figure 5B,D) 
OCT (Figure 5A,B) and OCTA (Figure 5C,D) B-scans. 
These B-scans were taken from 6×6 mm volumes centered 
at the fovea. Yellow dash lines indicate zoomed-in regions 
for detailed comparison before and after using the proposed 
algorithm. Visually, the common appearance of speckle 
patterns in the single images has been significantly reduced 

in the averaged images. 
Figure 6 shows another example of human retina data, 

but located inferornasally to the fovea. Figure 6A,D,G are 
the enface images of retina, choriocapillaris and OCTA 
B-scan of a single volume. Figure 6B,E,H and Figure 6C,F,I 
are organized the same way as Figure 6A,D,G, but from 
volumes averaged three times and six times, respectively. 
Visually, the averaged en face images showed smoother 
vasculature, i.e., better connectivity, better contrast 
between vasculature and avascular regions. It is particularly 
evident that the disrupted retinal vasculatures on the single 
scan image, likely caused by patient movements, were 
significantly resolved and improved after registration and 
averaging, as indicated by green arrows.

Apart from the human retina imaging, we have also 
tested this proposed algorithm on human skin imaging 
due to the increased usage of OCT/OCTA in dermatology 
applications. Figure 7 shows an example of en face OCTA 
image before and after registration and averaging. Similar 
to the human retina data, the averaged en face image shows 
less speckle noise, higher image contrast and better vascular 
connectivity. The inter-frame motion artifacts present on 
the single image (white arrows) have also removed after 
registration and averaging. Figure 7C,D show a zoomed-
in region of the whole 9×9 mm scan. It can be visually 
observed that in the registered and averaged images, 
the presence of larger vessels from deeper layers (blue) 
is significantly enhanced compared to the single image. 
Moreover, the capillaries from superficial layers (yellow) 
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also have a smoother appearance and less noisy.
The proposed algorithm works relatively fast. For 3D 

image registration, it took ~8 minutes to register 2 human 
skin OCT volumes (600×600×1,000) and 6 minutes to 
register 2 human retina volumes (500×500×1,000). For 2D 
images, it took ~6 seconds to register 2 human retina en face 
images (500×500). These processing times were assessed on 

a workstation configured with the Intel Xeon 2630-v3 CPU 
and 128G RAM. 

To evaluate further the performance of the proposed 
algorithm, PSNR and SNR were calculated using human 
skin data from all 5 subjects. As explained in the Methods 
section, there is a linear relationship between theoretical 
SNR value and the square root of iteration N. Such linear 

A B C D

Figure 5 A comparison of original and noise deducted B-scan OCT images of fovea scan. (A) typical single OCT B-scan. (B) Corresponding 
averaged OCT B-scan from 10 repeated volumes. (C) Corresponding single OCTA B-scan image. (D) Corresponding averaged OCTA B-scan 
from 10 repeated volumes. The zoomed areas show the changes of speckle after registration, indicating the speckle noise is significantly 
reduced after the registration and averaging algorithm. The scale bars represent 1 and 0.2 mm in lateral and axial dimension, respectively.
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relationship is shown in Figure 8A (the orange dashed line). 
The experimentally calculated SNR values against N  
is shown in Figure 8A (blue line), which agrees well with 
the theoretical ones. Figure 8B shows the experimentally 
calculated PSNR value against the iteration N. 11 registered 
volumes were used to generate this graph, PSNR describes 
how similar low quality images (the Ref1, Ave1, Ave2…Ave9 

volumes) are to the highest quality image (Ave10 in Figure 
3) base on Eq. [9]. The PNSRs over 4 averaged scans with 
the highest quality image are all over 50 dB, which indicates 
a very high similarity for and an early stop to acquire a high 
contrast image. 

Other than the SNR and PSNR, the NCC has also 
been calculated using the human skin data. Table 1 shows 

Figure 6 A comparison of different number of averaging: single scan (left column), averaged from 3 repeated volume scans (middle column), 
and averaged from 6 repeated volume scans (right column). (A-C) The MIP of retinal layer. (D-F) The MIP of choriocapillaris layer. (G-I) 
The cross-sectional image at the yellow dash line in (A-C). Generally speaking, the OCTA image quality is progressively improved with the 
increased number of repeated scans, in terms of vessel smoothness, connectivity, and background noise level. The green arrows indicate the 
regions where there is dramatic enhancement of vessel connectivity after processing. The scale bars represent 1 and 0.1 mm in lateral and 
axial dimension, respectively. 
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the calculated NCC between individual scans on original, 
Affine, and Affine combined with B-spline transforms. The 
NCC was calculated for both OCT and OCTA volumes. 
Notably, the NCC values in OCTA data were lower than 
that in OCT volumes, this was likely due to the high 
frequency noise and motion artifacts that existed in the 
OCTA images, degrading the similarity between volumes. 

Discussion 

In this paper, we have presented a useful approach for multi-
volume registration in OCT/OCTA, resulting in better 
averaging and noise reduction that would be useful for 
quantitative assessment of microvasculature features within 
tissue beds. The algorithm was designed for compensating 

the patient motion during and between each individual 
scans. Specifically, the proposed registration algorithm can 
minimize the spatial mismatch between repeated 3D scans, 
and align the volumes by using both affine and B-spline 
transformation. The affine transformation corrects the 
bulk motion, i.e., the global movement while the B-spline 
transformation compensates the local deformation. To 
increase the accuracy, stability and robustness of the 
algorithm we have also employed a multi-level resolution 
approach, in which the registration first starts on low 
resolution level and then the transformation calculated 
from lower resolution levels is being progressively applied 
to higher resolution levels. We have shown that such multi-
level resolution approach has the advantage of speeding up 
the processing, important for in vivo imaging applications. 

Figure 7 Illustration of the OCT imaging of skin with volume averaging. The OCTA en-face projection images are color encoded by vessel 
depth information from the tissue surface (see color bar). (A) The color encoded projection of a single volume and (B) the projection of the 
averaged result of 10 registered volumes. (C,D) The zoomed views of the green dash regions in (A,B), respectively. The speckle noise and 
the motion noise are suppressed in averaged results as indicated by the white arrows. The connectivity of vessel has been improved through 
the averaged image. (B,D) Also provide cleaner backgrounds and enhance the overall contrast. The scale bar represents 1 mm. 
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As demonstrated by both retina and skin data, after 
registering and averaging multiple 3D OCT and OCTA 
volumes, the proposed algorithm could significantly reduce 
speckle noise and motion artifacts, yielding higher SNR, 
PSNR and NCC values.

The proposed registration algorithm has been shown 
very robust for two main reasons: (I) the combined use 
of Affine and B-spline strategies, and (II) the multi-level 
resolution treatments in the registration. We employed 
the combination of both Affine and B-spline registration 
after careful considerations of misalignments at the 
sources between OCT volumes. The Affine registration 
compensates for the global movement between individual 
repeated scans due to patient movement. And the B-spline 

registration aligns the local mismatches due to local 
movement. Specifically, the movements are the results of 
the heartbeat, respiration and other deformation of the 
tissue. The multi-level resolution treatment is specifically 
designed for considering how the OCT’s scanning protocol 
would influence motion patterns. In the OCT imaging 
protocol, multiple A-lines are used to form a B-scan and 
multiple B-scans would form a C-scan (3D volume). 
Therefore, when scanning a 3D sample, on the A-line 
direction, the motion is minimal (almost negligible) because 
the scanning speed is the fastest at the collection of A-scans. 
On the C-scan direction, the motion is the worst because 
the scanning speed is the slowest, and the B-scan direction 
is in between. This is why we designed the strategy to 
downsample the data differently at the A, B, and C scan 
directions. Comparing to a uniform downsampling, the 
proposed approach is efficient in reducing computational 
resources and increasing the stability of the algorithm on 
different samples. The number of downsampling levels 
and the iterations for parameters optimization can also 
be further optimized based on the cost function curves 
shown in Figure 7. For example, since the cost function 
for Affine transform converged on R1, it is not necessary 
to downsample four times. It is likely that with different 
type of OCT data, the required levels of downsampling for 
affine and B-spline transformation would also be different. 
Therefore, it is suggested that the optimal selection of 
downsampling levels is adjusted accordingly in terms of 
practical imaging situations.

Successful registration on both human skin data and 
human retina data from different OCT systems can also 
attest to the robustness of the proposed registration and 
averaging algorithm. Qualitatively, the averaging images 
are all shown with significantly less speckle noise and with 
line-like motion artifacts removed. On OCTA images, 
the connectivity of vasculature has been demonstrated to 
improve after averaging. The human skin data (Figure 7) 
revealed that the motion artifacts (the horizontal lines) are 
minimized and image contrast has been improved after 
averaging. For human retina data, Figure 5 showed that 
less speckle noise is present on OCT and OCTA B-scan 
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Figure 8 The performance assessment with the increase of 
averaging numbers. (A) SNR and (B) PSNR of OCT structure 
images increased with the increase of the number of averages. The 

dashed line in (A) represents the fitting by N  curve.

Table 1 The normalized correlation coefficient of original images registered images

Original Affine registered B-spline registered

OCT 0.3535±0.087 0.5727±0.1463 0.6334±0.1834

OCTA 0.1547±0.0094 0.4381±01202 0.5028±0.1452

OCT, optical coherence tomography; OCTA, optical coherence tomography angiography.
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images after registration and averaging. Particularly, the 
features of vessels and lumens in the choriocapillaris can be 
much clearly observed in averaged images. Figure 6 showed 
examples of en face projection images after the volumetric 
registration. On single scan OCTA images (Figure 6A,D), 
there are small broken endpoints and disconnectivity within 
capillary networks as well as obvious motion artifacts (green 
arrows). After 3 or 6 averages, vasculature connectivity has 
been significantly improved and previously present motion 
artifacts have also been compensated. It is expected that 
further quantification analysis based on averaged OCTA 
images could be much more reliable than single scan OCTA 
images. Quantitatively, we calculated SNR, PSNR and 
NCC as numerical descriptions of image quality. All three 
parameters have increased to a various extent with multiple 
averaging. Both qualitative and quantitative evidence 
strongly suggest that the proposed method can significantly 
improve OCT and OCTA image quality and potentially 
facilitate better clinical decision making.

Even though the proposed algorithm was designed 
for 3D data, it  can also be applied to 2D images. 
Similar procedures have been reported in our previous  
study (5) with various constraints and parameters. The 
2D registration requires fewer computation resources 
but it also requires layer segmentation as a step of image 
preprocessing. Moreover, with a 3D registration approach, 
it is likely that the extra depth information could be useful 
in some clinical settings. For example, the diagnosis and 
management of macular edema sometimes would require 
3D OCT scans. In this case, this averaging approach could 
help obtain more accurate information of 3D tissue and 
vessel morphology.

There are a couple of advantages of our proposed 
algorithm comparing to previously published methods. 
Mostly, this proposed algorithm can be applied directly to 
OCT and OCTA data acquired from commercially available 
OCT systems. It does not require image preprocessing 
such as layer segmentation (23,24), or extra imaging 
hardware (16,18). Therefore, compared to previously 
published methods, it has a wider range of application 
possibilities. It can also be applied to data from other 3D 
imaging modalities such as ultrasound, MRI, multiphoton 
microscopy etc. Moreover, this approach does not require 
any particular scanning protocols such as orthogonal 
scanning requirement like in (22), though it can be applied 
to data acquired by any scanning protocols.

There are also some limitations of the proposed 
algorithm. Firstly, this algorithm is an intensity based 

registration algorithm, therefore it could fail if the intensity 
of images is too homogenous. Luckily, biological tissues 
usually have some unique features that can guide the 
registration and reduce unconstrained errors. Secondly, 
it is quite computationally expensive to register multiple 
3D volumes. We have already utilized parallelization for 
optimization to improve the speed of the framework, but 
it still takes 60 minutes to register and average 10 OCT 
volumes under high quality setting, especially when each 
volume is as large as 600×600×2,560 pixels. There certainly 
exists a tradeoff between the quality of registration and the 
computational resources needed. With the same workstation 
set up, the time needed for registration can be adjusted by 
optimizing the number of downsampling levels and the 
number of iterations according to practical situations. The 
future development is to implement the proposed algorithm 
on a GPU platform (39) to further improve the speed. 
Lastly, the proposed registration algorithm is not boundless, 
meaning that a certain amount of overlap between images 
is need to succeed. For our collected human retina data, the 
motion tracking feature was turned on during acquisition; 
and for our collected human skin data, the portable 
probe was attached to the samples to avoid large subject 
movements. We did not observe any failures of registration 
on our collected data, but if the inter-volume motion is 
too large, this proposed algorithm can certainly experience 
errors or failures.

In conclusion, we have proposed a 3D registration 
method and demonstrated its robustness on reducing 
speckle noises and suppressing motion artifacts. Both human 
skin data and retina data were collected from different OCT 
systems to test the robustness of this proposed algorithm. 
Averaged OCTA data showed higher contrast of vascular 
network and better connectivity for vessels of all sizes, as 
evidenced by the resulting higher SNR, PSNR and NCC 
metrics. It is expected that the proposed algorithm would 
be practically useful in better visualization and more reliable 
quantification of in vivo OCT and OCTA data, which could 
be beneficial to research and clinical applications of OCT. 
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