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Background: Multiphoton microscopy (MPM) offers a feasible approach for the biopsy in clinical 
medicine, but it has not been used in clinical applications due to the lack of efficient image processing 
methods, especially the automatic segmentation technology. Segmentation technology is still one of the most 
challenging assignments of the MPM imaging technique. 
Methods: The MPM imaging segmentation model based on deep learning is one of the most effective 
methods to address this problem. In this paper, the practicability of using a convolutional neural network 
(CNN) model to segment the MPM image of skin cells in vivo was explored. A set of MPM in vivo skin 
cells images with a resolution of 128×128 was successfully segmented under the Python environment with 
TensorFlow. A novel deep-learning segmentation model named Dense-UNet was proposed. The Dense-
UNet, which is based on U-net structure, employed the dense concatenation to deepen the depth of the 
network architecture and achieve feature reuse. This model included four expansion modules (each module 
consisted of four down-sampling layers) to extract features.
Results: Sixty training images were taken from the dorsal forearm using a femtosecond Ti:Sa laser running 
at 735 nm. The resolution of the images is 128×128 pixels. Experimental results confirmed that the accuracy 
of Dense-UNet (92.54%) was higher than that of U-Net (88.59%), with a significantly lower loss value of 
0.1681. The 90.60% Dice coefficient value of Dense-UNet outperformed U-Net by 11.07%. The F1-Score 
of Dense-UNet, U-Net, and Seg-Net was 93.35%, 90.02%, and 85.04%, respectively.
Conclusions: The deepened down-sampling path improved the ability of the model to capture cellular 
fined-detailed boundary features, while the symmetrical up-sampling path provided a more accurate location 
based on the test result. These results were the first time that the segmentation of MPM in vivo images had 
been adopted by introducing a deep CNN to bridge this gap in Dense-UNet technology. Dense-UNet 
has reached ultramodern performance for MPM images, especially for in vivo images with low resolution. 
This implementation supplies an automatic segmentation model based on deep learning for high-precision 
segmentation of MPM images in vivo.
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Introduction

The analysis of in vivo cells plays a pivotal role in describing 
genetic expressions and surveying the movements and 
structures of cells in clinical medicine (1,2). Moreover, the 
morphological change of human skin cells in vivo is a key 
cutaneous property of skin investigations, the study of which 
could offer new perspectives into the analyses of different 
cutaneous components and their age-related differences and 
the research of skin disorders such as melasma. Assessing 
the cellular structure and the depth of lesion tissue is 
critical for skin disorder treatments. Sometimes, biopsies 
are infeasible due to the distribution characteristics of skin 
disorders, thus requiring multiple sampling locations (3).  
Therefore, in vivo skin imaging techniques are being 
researched extensively and their application value since 
their noninvasiveness can retain the native state of the 
tissue and avoid the resection of tissue and scarring (4-6).  
In recent years, many noninvasive diagnostic methods 
using optical tissue imaging in vivo have been developed, 
including multiphoton microscopy (MPM). Lentsch et al. (3)  
evaluated the melanin content, melanin volume fraction, 
and distribution of melasma using MPM. MPM has been 
proved to be an effective biological imaging technique due 
to its deep penetration depth and low photobleaching and 
toxicity (7). MPM imaging relies on non-linear optical 
excitation processes such as two-photon excited fluorescence 
(TPEF) and second harmonic generation (SHG) (8,9). The 
TPEF can show the cellular morphology, and the SHG is 
sensitive to collagen fibers (3). MPM can directly visualize 
cells and tissues compared with conventional ways and has 
been widely applied in surveying the structure and dynamic 
interactions of cells and tissues. Lin et al. have developed 
a classification method of hepatocellular carcinoma using 
deep learning and speculate that MPM imaging may 
become irreplaceable for in vivo research (10). A key step 
for the study of in vivo imaging techniques is using cellular 
image segmentation to analyze and measure cellular 
boundaries and outlines. The quantitative analysis of in 
vivo cells using MPM imaging and cellular segmentation 
algorithms is of tremendous clinical value since it can 
supply new insights into the quantitative measurements 
of skin structures. To our knowledge, the MPM image 
segmentation results are dissatisfactory in general due to 
the blurred cellular boundaries, inhomogeneous depths, low 
amounts of data, and low signal-to-noise ratio (SNR) (8,11). 
As a result, it is rarely exploited in clinical scenarios due to 
the lack of an effective automatic segmentation method for 

MPM images.
Conventional methods like the threshold method, region 

growth, edge detection, watershed-based algorithms, 
and level set methods attempt to find the boundaries and 
outlines of in vivo cells without any marking information (8).  
A deformable model has been devised by Ma et al. (12), 
which utilizes the color information to semiautomatically 
segment dermoscopic images. The accuracy of the 
segmented results is low. As the usage of deep-learning 
and convolutional neural networks (CNN) has grown 
dramatically, the accuracy of the segmented results has 
increased in kind, and gained attention in medical image 
processing. Different from conventional algorithms, the 
use of fully convolutional networks (FCN) is an elegant 
segmentation method that exports segmentation maps (13).  
Deconvolutional operation is executed to upsample the 
feature map in the last convolutional layer of FCN to 
achieve pixel-level semantic segmentation. An FCN 
architecture named U-Net, which was proposed by Olaf  
et al. (14) has achieved outstanding achievements in medical 
image segmentation. Based on two well-known public 
datasets, a multistage FCN model was designed for skin 
lesion segmentation by Bi et al. (15). The segmented ability 
of the FCN was improved by this work. An automatic 
segmentation technique based on the deep FCN that used 
the Jaccard distance loss function with the ISBI training 
datasets for skin lesion segmentation was established by 
Yuan et al. (16). Also, Damseh et al. established a modified 
FCN to segment 2-photon microscopy images (17). An end-
to-end segmentation network with 97 convolutional layers 
was also set up. High accuracy has been achieved by these 
approaches with well-known public datasets or clear medical 
images. Xiao et al. presented the Res-UNet with a weighted 
mechanism to segment retinal vessels from the DRIVE and 
the STARE datasets (18). U-Net was outperformed by an 
improved model named the stacked dilated U-Net, which 
was developed by Reza et al. (19) that could segment inner 
human embryonic cells. Another improved U-Net model 
by Zhang et al. was developed to conduct liver segmentation  
by (20). Despite these innovations, there is still no 
customized segmented model for human skin in vivo 
multiphoton microscopy images. Research does exist on 
CNN–MPM combined imaging technology for human skin 
that mainly adopts 3D image processing (7,8,11) (including 
separating the dermis and the epidermis in 3D structures), 
but the details of the cellular boundary segmentation in 
these studies are absent.

A novel cellular segmented model based on U-net 
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for MPM cellular images is here proposed to address 
these problems. The objective of this study was to 
evaluate whether MPM imaging coupled with an image 
segmentation method based on the CNN could provide 
new insights into in vivo cell morphological analysis that 
used a small amount of data and had blurred boundaries.

Methods

U-Net model 

U-Net is an advanced network that can be used to 
segment biomedical images (21-23). It includes a left-hand 
contracting path followed by an expansive right-hand path 
that forms a symmetrical U-Net shape (14). Some map-
channels are used to connect each homologous layer of 
the two paths. Each map-channel functions as a bridge 
to convey contextual and localization information (13).  
The left-hand contracting path consists of 4 steps. Each 
step is comprised of two convolution layers (3×3) and 
one subsequent max-pooling layers (2×2) and uses the 
ReLU function as the rectified function. This path can be 
trained to capture the context. The expansive right-hand 

path is also formed of the corresponding four steps. Each 
step consists of an upsampling layer and two convolution  
layers (14), and also uses the ReLU function as the rectified 
function.

Proposed model: dense-UNet 

U-Net ordinarily executes four downsamplings before the 
concatenate operation, resulting in resolution loss. The 
resulting resolution loss requires extensional techniques 
that depend on a deep network structure rather than a 
shallow one to improve accuracy (23). For these reasons, 
we employed the dense concatenated U-Net, called Dense-
UNet.

Model architecture

Our network is built by combining the U-net with the 
dense concatenation, as illustrated in Figure 1. The Dense-
UNet consists of a dense downsampling (to the right) path 
and a dense upsampling (to the left) path, with the two 
paths being symmetrical. Some skip connection channels 
have been implemented to concatenate the two paths.

Figure 1 Schematic diagram of proposed Dense-UNet architecture. 
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The semantic contextual features have been captured 
on multiple scales by the convolution operation in the 
dense downsampling path. It should be noted that just 
four downsampling layers have been applied to extract the 
local features, and the images have low input resolutions 
of 128×128×3. To address the limited depth of the U-Net 
architecture, we replaced the pooling and convolution 
operations with the dense_block operation and the 
transition_block operation in the downsampling path, 
which is named the dense downsampling path, to deepen 
the depth of the network. Each layer of the dense_block is 
linked to all its previous layers in a feed-forward mode to 
maximize feature reuse. Specifically, the input of each layer 
obtains the output feature maps from all its preceding layers 
(named dense concatenation). For this, the feature maps in 
each layer need the dense blocks to have the same feature 
size. The proposed Dense-UNet architecture has 10 dense_
blocks: 5 dense_blocks in the dense downsampling path, and 
5 dense_blocks in the dense upsampling path. Each dense_
block consists of 4 densely connected layers with the same 
feature size, as shown in Figure 2. The transition_block is 
presented to achieve the layer transition. A dense_block and 
a transition_block form a layer, and five layers compose the 
dense downsampling path. We employed the upsampling 
layer, merger operation, and dense_block operation to 

reconstruct the high-resolution images in the dense 
upsampling path. The path is made up of five layers that 
localize the regions and recover the full input resolution. 
However, when the dense_block replaces the convolution, 
the dense upsampling path is substantially like the U-Net 
mechanism. The details of the network’s configuration are 
summarized in Figure 3.

As shown in Figure 2, four densely connected layers 
(named den_con_layers in Figure 2) have been incorporated 
in a dense_block. Each den_con_layer has two convolution 
operations. There is a total of 8 convolution operations 
in a dense_block. In the interest of feature reuse and 
compensating for the resolution loss, each layer is 
connected to all earlier layers to make better use of the 
extracted features. For example, the fourth layer of the den_
con_layer receives the feature maps from layers 1, 2, and 
3. The dense connections were applied in the dense_block 
and not in the whole architecture to avoid increasing the 
number of parameters.

Each den_con_layer has a set of operations, including 
batch normalization, convolution, activation (ReLU), 
and dropout operations, as found in Table 1. The input is 
first fed into a batch normalization operation to alleviate 
the vanishing gradients. Then, the outputs are subjected 
to a convolution operation with a 1×1 filter to decrease 
the number of feature maps of the inputs. Further 
downsampling via a convolution operation is applied with a 
3×3 filter to extract the features. The dropout layer follows 
to avoid overfitting.

The transition_block is applied between 2 layers of 
the dense downsampling path to make the concatenation 
successful. It is composed of the batch normalization 
operation, the convolution operation, and max pooling with 
a 2×2 filter. The stride of 2 of the max pooling operations 
means that the filter will shift 2 pixels at a point to diminish 
the size of the output.

Four basic modules are illustrated in Figure 3, including 
the dense_block, the transition_block, the upsampling 
convolution layers, and the merge layers. To be specific, 
there are 23 layers and 89 convolution operations in total, 
including ten dense_blocks layers (as shown in Figure 2 and 
Table 1), four transition_block layers (as shown in Table 2),  
four upsampling layers, four merge layers, and one 
convolution operation.

Loss of function

The binary cross-entropy is usually employed as the loss 

Figure 2 Flow chart of a dense_block.
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function, which can be formulated as follows:

( ) ( )1

1 log 1 log 1k
j j j jj

L n m n m
f =

= − + − −∑ 	 [1]

where f is the number of pixels, and mj and nj respectively 

show the predicted value and its corresponding ground-
truth value. However, the resulting inefficient optimization 
requires the adaptive loss function due to the high 
susceptibility of the cross-entropy loss function to class 
imbalance. Therefore, Dice-loss is used as the loss function 
in our model as follows: 
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where mj is the predicted value, and nj is the corresponding 
ground-truth value.

Experimental framework

Imaging device
In this work, a recently labeled dataset that includes three 
videos that were acquired using MPM were annotated to 
train the neural network model. The videos were taken 
from the dorsal forearm of an Asian female volunteer aged 
30 using a femtosecond Ti:Sa laser running at 735 nm. 
This RCM/MPM instrument is capable of simultaneously 
imaging human skin in vivo at up to 27 fps for RCM , SHG, 
and TPF imaging channels, and the videos of MPM signal 
of this instrument is integrated into 1 PET  from the SHG 

Figure 3 Flow chart of Dense-UNet.
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Table 1 Detailed setting for the den_con_layer

Num Layer

1 Batch Normalization

2 Conv (1×1)

3 Activation (ReLU)

4 Batch Normalization

5 Conv (3×3)

6 Activation (1×1)

7 Dropout

Table 2 Detailed setting for the transition_block

Num Layer

1 Batch Normalization

2 Conv (1×1)

3 Max Pooling (2×2)
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and TPF imaging channel, while the cytoplasm is seen. The 
field of view of the system is 200×200 µm. The keratinocytes 
of the living epidermis are shown in Figure 4. In total, 15 
original images with 256×256 resolution and a 24-bit depth 
of each pixel were obtained from different imaging depths 
of 3 different videos. The original pictures were divided into 
60 pictures with a resolution of 128×128 to the expansion 
dataset (42 for training and 18 for testing). The study was 
approved by the University of British Columbia Research 
Ethics Board (no. # H96-70499). Informed consent was 
obtained from each volunteer subject.

Evaluation metric
Some evaluation metrics, including the Dice coefficient, 
accuracy, precision, and recall, were adopted to compare 
the performances of Dense-UNet and other methods to 
compare the performances of different methods.

The Dice coefficient measures the overlapping pixels 
between the automatic and manual segmentation of skin in 
vivo cells, which is calculated as follows: 

2 
2

TPDice Coeff
TP FP FN

×
=

× + +
	 [3]

where TP represents true positives and is the number of 
pixels that are accurately segmented as in vivo cells, TN 
represents true negatives and is the number of pixels that 
are accurately segmented as background, FP represents 
false positives and is the number of pixels that are wrongly 
segmented as in vivo cells. FN is false negatives and is the 

number of pixels that were missed.
Accuracy is the entire accuracy of the in vivo cell and 

background segmentation, which is described as the 
following:

TN TPAccuracy
TP FP TN FN

+
=

+ + +
	 [4]

Precision is the proportion of in vivo cells that are 
classified as true-positive pixels concerning all pixels of in 
vivo cells that are classified by automatic segmentation, 
which is delimited as follows:

TPPrecision
TP FP

=
+

	 [5]

The recall represents the proportion of the true positive 
pixels of in vivo cells that are classified by automatic 
segmentation versus the pixels of in vivo cells that are 
classified by manual segmentation, which is calculated as 
follows:

TPRecall
TP FP

=
+

	 [6]

F1-Score is used to quantify the weighted average of in 
vivo cells between the precision and recall rate, with a value 
in [0, 1], and is calculated as follows:

1_ 2 Precision RecallF Score
Precision Recall

×
= ×

+
	 [7]

Intersection over union (IOU) is a homologous metric 

Figure 4 MPM images of the dorsal forearm shin in vivo. Excitation wavelength λex =720 nm. FOV = 200×200 μm. Resolution = 256×256 pixels.  
MPM, multiphoton microscopy.
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addition determined by weighting the ratios between the 
overlap area and union area as :

TPIOU
TP FN FP

=
+ +

	 [8]

Results

The testing was implemented on Microsoft Windows 
10.0.17134 [Intel(R) Core™ i7-8700 CPU@3.20 GHz] 
using a GeForce GTX 1080 Ti with a memory clock rate 
(GHz) of 1.683. The programming is implemented using 
Python 3.5.2, Anaconda 4.2.0 (64-bit), TensorFlow-GPU 
1.12.0, CUDA Toolkit 9.0, cuDNN v7.0.5, VS2015, and 
Keras 2.2.4.

First, the Dense-UNet model is executed to evaluate 
the performance of U-Net. The in vivo cell segmentation 
performances are compared between Dense-UNet and 
other typical methods (Seg-Net and U-Net) on the same 
datasets, as is depicted in Table 3. It is demonstrated that 
Dense-UNet outperforms U-Net by 11.07% in the Dice 
coefficient, 3.95% in the accuracy, 4.28% in the precision, 
1.32% in the recall, 3.33% in the F1-Score and 6.31% 
in the IOU. Also, Dense-UNet outperforms SegNet by 
12.18% in the Dice coefficient, 10.28% in the accuracy, 
12.19% in the precision, 3.89% in the recall, 8.31% in the 
F1-Score and 10.7% in IOU.

The test images were chosen from a new video to avoid 
the repetition of the data, as shown in Figure 5. Lower 
resolution MPM images are described in the first column. 
The results of segmentation (white areas) by the Dense-
UNet, U-Net, and Seg-Net are represented in the second 
to fourth columns, respectively. It is clear that Seg-Net 
commonly commits overfitting and loses some fuzzy cells 
without being able to recognize and segment cells of in 
vivo MPM images effectively. Meanwhile, the U-Net 
also commits overfitting and is unable to extract the fine-
detailed boundary information. The segmentation results 
by Dense-UNet are closer to the real boundaries than the 
others. In short, the segmentation results proved that the 

Dense-UNet could aptly manage blurry and low-resolution 
medical images.

Discussion

In general, judging the performance of different algorithms 
is done according to the accuracy of prediction results. 
The most recent segmentation algorithm of in vivo MPM 
images was proposed by Wu et al. in 2016 and is based on 
superpixel and watershed (8). The MPM images of human 
skin in vivo have some specific characteristics, including 
blurry boundaries, low resolutions, and inhomogeneous 
contrast ratios. U-Net is an ultramodern method to conduct 
medical image segmentation. In it, only four downsampling 
layers are used for feature extraction. Although the 
segmented results of U-Net are much better than those of 
Seg-Net, as shown in Table 3 and Figure 5, the U-Net is 
still not sensitive enough to capture the finer details. The 
white areas that are segmented by U-Net are still smooth 
by ignoring the spatial information of shallow layers. Also, 
the resolution of the MPM images is as low as 128×128×3, 
which makes it hard to extend the depth of the contracting 
path using the U-Net model. The Dense-UNet supplied 
more exact segmentation of in vivo cells than the U-Net 
and SegNet. The Dense-UNet enjoys the advantages both 
the U-net and Dense-net and uses dense concatenations to 
deepen the depth of the contracting path. The structural 
characteristics of the Dense-UNet can be summarized in 
the following points.

(I)	 The novel Dense-UNet model combines a dense 
structure with a full convolution network (FCN). 
By inheriting the superiority of both the FCN 
and deep CNN, more semantic features, and high 
segmentation accuracy are gained by the deeper 
structure.

(II)	 Feature reuse is achieved by iteratively summing all 
earlier feature maps for every layer of the dense_
block. This way, more boundary details of blurry, in 
vivo skin cells can be segmented due to the feature 
reuse.

Table 3 Segmentation results for the proposed Dense-UNet and segmentation models

Method Loss Dice Coef Acc Pre Recall F1-Score IOU

Seg-Net 0.5242 0.7842 0.8226 0.8123 0.8951 0.8504 0.7614

U-Net 0.2987 0.7953 0.8859 0.8914 0.9208 0.9002 0. 8053

Dense-UNet 0.1681 0.9060 0.9254 0.9342 0.9340 0.9335 0.8684



1282 Cai et al. Dense-UNet for MPM image segmentation

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2020;10(6):1275-1285 | http://dx.doi.org/10.21037/qims-19-1090

Figure 5 MPM images of human skin in vivo and segmentation results. The first column shows the MPM image of human skin in vivo. The 
following three columns display the segmentation results by Dense-UNet, U-Net, and SegNet, respectively. Resolution = 128 × 128 pixels. 
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(III)	 The vanishing gradient and model degradation 
issues are relieved by the feature reuse and batch 
normalization.

(IV)	 More efficacious optimization can be achieved 
as the iterative sum need not be applied between 
different dense_blocks, and the number of 
parameters can be significantly reduced due to 
feature reuse and bypass. 

(V)	 The features from earlier layers are mapped in short 
paths (only 1 to 4) using the dense concatenation 
since there is not a dense concatenation between 
different dense_blocks. The resolution is recovered 
by using the captured features in the expansive 
path, which improves the discrimination capability.

As expected, the Dense-UNet achieved the most advanced 
segmentation of MPM images of human skin in vivo.
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Conclusions

In this paper, the Dense-UNet method was proposed to 
solve the segmentation problems for MPM images of 
human skin in vivo. 

Dense-UNet adds a dense concatenation to U-Net with 
89 convolutional layers, which allows it to combine the 
advantages of the method with the superiority of the deep 
CNN. The adaptability of Dense-UNet for MPM images 
of skin in vivo is better than that of U-Net under low 
resolutions and inhomogeneous contrast ratios. This is the 
first time that the U-Net has been combined with the deep 
CNN and used for in vivo cell image segmentation. The 
quantitative analysis of MPM images of human skin in vivo 
based on this deep-learning model can be used to research 
the variations of cellular features more effectively with 
pathologies and improve clinical diagnosis.
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