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Background: The differences in benign and malignant breast tumors are not only within the nodules but 
also involve changes in the surrounding tissues. Radiomics can reveal many details that are not discernible 
to the naked eye. This study aimed to distinguish between benign and malignant breast nodules using an 
ultrasound-based intra- and peritumoral radiomics model.
Methods: This study retrospectively collected the information from 379 patients with Breast Imaging 
Reporting and Data System (BI-RADS) category 3–5 nodules and clear pathological diagnosis of breast 
nodules screened by routine ultrasound examination in the Sixth People’s Hospital Affiliated to Medical 
College of Shanghai Jiao Tong University from January 2017 to December 2022. The largest dimension of 
the lesion on the 2D ultrasound image was selected to outline the area of interest which was conformally and 
outwardly expanded automatically by 5 mm to extract intra- and peritumor radiomics features. The included 
cases were randomly divided into training sets and test sets in a ratio of 7:3. The optimal features of the 
included models were retained by statistical and machine learning methods of dimensionality reduction, and 
logistic regression was used as the classifier to build an intratumoral model and a combined intratumoral-
peritumoral radiomics model, respectively; through single-factor and multifactor logistic regression, the 
optimal features that could predict benign and malignant breast tumors were screened. The clinical and 
imaging models were established by selecting independent risk factors as clinical and imaging features 
through univariate and multifactorial logistic regression.
Results: Among 379 BI-RADS category 3–5 breast nodules, there were 124 malignant nodules and 255 
benign nodules; patients were aged 14 to 88 (46.22±15.51) years, and the age differences, radiomics score, 
and mass diameter between the training and test sets were not statistically significant (P>0.05). The intra- 
and peritumor radiomics model had an area under the curve (AUC) of 0.840 [95% confidence interval (CI): 
0.766–0.914] in the test set. The model with intra- and peritumoral ultrasound radiomics features combined 
with clinical features had an AUC value of 0.960 (95% CI: 0.920–0.999).
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Introduction

Breast cancer, one of the major malignancies in women, 
is becoming more prevalent at younger ages (1) and is 
now the leading cause of cancer-related death in women 
aged 20–59 years (2). Early diagnosis and treatment are 
essential to improving the survival rate and quality of life of 
patients with breast cancer (3). Breast imaging examinations 
mainly include ultrasound, mammography, and magnetic 
resonance imaging (MRI). Mammography has advantages 
such as simplicity of operation, low cost, high resolution, 
good reproducibility, and sensitivity to calcifications (4). 
However, it has poor imaging efficacy for dense breasts, 
which are prevalent among Asian women and thus has 
low sensitivity and accuracy in detecting breast cancer in 
these women (5,6). Compared to mammography, breast 
ultrasound has several advantages: it is noninvasive, cost-
effective, and easy to operate, while not involving radiation; 
however, it lacks sensitivity to detect calcification. Recent 
research indicates that breast ultrasound can, to some 
extent, compensate for the drawbacks of mammography. As 
a supplementary method to mammography examination, 
breast ultrasound can effectively detect breast cancer at 
an earlier stage and enhance the sensitivity and detection 
rate of cancer screening (7-9). Ultrasound has become one 
of the primary methods for the early screening of breast 
nodules (10). Although breast MRI yields excellent imaging 
effects and high sensitivity, it also has a substantially high 
false-positive rate (11), and limitations in usage, including 
patients with internal fixation surgeries or conditions such 
as pacemaker implantation, claustrophobia, and contrast 
agent allergy, restrict its implementation. As a result, MRI 
is primarily used for the supplemental examination of breast 
ultrasound and mammography, as well as screening high-
risk populations, such as carriers of gene mutations (12). 
The American College of Radiology (ACR) Ultrasound 
Breast Imaging Reporting and Data System (BI-RADS) is 
a useful tool that can assist clinicians in correctly managing 

breast nodules. However, for breast nodules categorized 
as BI-RADS 3 to 5, there is a broad range of possible 
malignancies, making it challenging to reach a differential 
diagnosis and to avoid unnecessary biopsy procedures (13). 
Radiomics can extract features from medical images that 
are not visually identifiable by the human eye in a high-
throughput manner, and the extracted features may be 
associated with the tumor’s heterogeneity and the biological 
activity of its cells (14). Reports indicate that radiomics may 
improve the diagnosis, prognosis, and treatment prediction 
of breast cancer (15). The area under the curve (AUC) 
values of ultrasound-based radiomic models for diagnosing 
breast cancer range from 0.817 to 0.943 (16-19). Other 
studies have shown that ultrasound-based radiomics and 
deep learning radiomics based on multimodal ultrasound 
(color Doppler or elastography) can improve the recognition 
ability of radiomics (20-22). Prior breast radiomics research 
has mainly focused on intratumoral regions. Breast cancer 
consists of tumor cells and stromal cells, which can cause 
significant changes in the peritumoral stroma. Multiregional 
radiomics information may be a potential means to improving 
the diagnosis of breast cancer (23).

This study aimed to develop a model that effectively 
enhances the efficacy of the preoperative diagnosis of 
breast cancer by extracting radiomics features from gray-
scale ultrasound images of intratumoral and peritumoral 
regions of breast nodules and by integrating these features 
with clinical and ultrasound data. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-23-283/rc).

Methods

Statement of ethics

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and was 

Conclusions: The nomogram, developed using intratumoral and peritumoral radiomics features combined 
with clinical risk features, demonstrated superior performance in distinguishing between benign and 
malignant BI-RADS 3–5 lesions.
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approved by the local medical ethics committee at Sixth 
People’s Hospital Affiliated to Medical College of Shanghai 
Jiao Tong University (No. 2019-027). All data used in this 
study underwent anonymization and did not compromise 
personal privacy or commercial interests. Therefore, the 
requirement for informed consent from all patients was 
waived.

Study population

Our study continuously included 379 patients who 
underwent routine examinations and breast lesion 
surgeries at our hospital between January 2017 and 
December 2022. Moreover, patients were required to have 
undergone routine ultrasound scans suggestive of BI-RADS 
category 3–5 breast nodules as supported by complete 
examination data and confirmed by surgical or puncture 
biopsy pathology. Patients were not enrolled if they had 
incomplete pathological findings, a history of radiotherapy 
or chemotherapy, or poor-quality ultrasound images. 
Enrollment additionally required all patients to have 
complete clinicopathological information and descriptive 
reports. Figure 1A shows the flowchart depicting the patient 
inclusion process.

Ultrasonography and region of interest (ROI) outlining

For ultrasonography, the patient was placed in the supine 
position, a multisectional radiographic scan was performed 
with the nipple as the center of the scan, and the lesion was 
observed from multiple views. The image of the largest 
cross-section of the node was then stored in Digital Imaging 
and Communications in Medicine (DICOM) format on 
a hard disk. Two expert diagnostic physicians with over  
10 years of experience in breast ultrasound diagnosis, 
who were unaware of the pathological results, classified 
the breast nodules according to the BI-RADS. In case of 
controversial nodules, a consensus was reached through 
discussions between the 2 physicians. We collected data 
on age, size, color Doppler flow imaging (CDFI), and BI-
RADS classification to use as variables in the clinical feature 
model that followed.

Images that met the inclusion criteria for an ultrasound 
diagnosis of a clear BI-RADS class 3 to 5 breast nodule 
were selected using randomization to select 70% of patients 
(n=265) to form a training set and the remaining 30% 
(n=114) to form a test set. Since the voxels were already 
isotropic in plane, there was no need for resampling 

before extracting features. However, in order to ensure the 
comparability of images acquired from different scanners and 
with varying settings, gray-level whole-image normalization 
was conducted. As a result, the range was standardized to 
0–600. The ROI was manually outlined along the contour 
of the breast mass on the ultrasound image using ITK-
SNAP 3.8 software (Figure 1B) by a physician with more 
than 10 years of experience in breast ultrasound diagnosis 
with unknown pathology; the peritumoral ROI was a ring-
like region obtained by automatically conformally expanding 
the boundaries of the ROI by 5 mm according to the 
intratumoral outline (Figure 1B).

Feature extraction and selection

The Pyradiomics package version 3.0.1 in Python (The 
Python Software Foundation) was used to calculate 
radiomics features. These features included first-order, 
shape-based (2D), and textural features and were calculated 
from the original ultrasound images. In addition, filtered 
features were calculated by filtering the original images 
with various types of filters, as described in the pyradiomics 
documentation (https://pyradiomics.readthedocs.io/). First-
order and textural features were calculated based on the 
filtered ultrasound images. A total of 3,123 features were 
extracted from the intra- and peritumoral areas in each 
patient.

All extracted features were analyzed as follows. First, the 
intra- and interclass correlation coefficient (ICC) analyses 
were performed on the extracted features. Features with 
ICC values lower than 0.9 were excluded. Following this, 
the Mann-Whitney test was performed on the features, 
and any feature with a P value greater than 0.05 was 
eliminated. Features exhibiting a strong pairwise Spearman 
correlation (r>0.90) and the highest mean correlation with 
all other features were excluded. Next, we employed the 
least absolute shrinkage and selection operator (LASSO) 
regression model to construct the radiomics signature 
using the discovery dataset. LASSO shrinks all regression 
coefficients toward zero and sets the coefficients of many 
irrelevant features to zero based on the weight λ. To find 
the optimal λ, we used 10-fold cross-test with minimum 
criteria, where the final value of λ yielded the minimum 
cross-test error. The parameters of the retained features 
with nonzero coefficients were used for the regression 
model fitting and were combined into a radiomics signature. 
This was followed by obtaining a radiomics score for each 
patient through the linear combination of the retained 
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features weighed by their respective model coefficients. 
The Python “scikit-learn” package was used for LASSO 
regression modeling.

Model construction and test

We used the logistic regression machine learning model 
to construct the risk model using the final features. 
Logistic regression can be described as follows: when 
confronted with a regression or classification problem, a 

cost function is established, and optimal model parameters 
are iteratively determined through optimization methods; 
the obtained model is then tested and validated to evaluate 
its performance. We adopted 5-fold cross-test to obtain 
the final radiomics signature. Additionally, to assess the 
incremental prognostic value of the radiomics signature 
to the clinical risk factors, we developed a radiomics 
nomogram based on logistic regression analysis using 
the test dataset. The nomogram combines the radiomics 
signature and clinical risk factors to calculate the breast 

Figure 1 Study flowchart. BI-RADS, Breast Imaging Reporting and Data System; mRMR, maximum relevance-minimum redundancy; 
LASSO, least absolute shrinkage and selection operator; LR, logistic regression; SVM, support vector machine; intra, intratumoral features; 
peri, peritumoral features. 
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cancer prediction. We used the calibration curve to compare 
the agreement between the breast cancer prediction of the 
nomogram and the actual observation.

The building process for the clinical signature is similar 
to that of the radiomics signature. We selected the features 
for building the clinical signature based on baseline statistics 
with a P value <0.05. We also used the same machine 
learning model and set the 5-fold cross-test and test cohort 
to be fixed for a fair comparison.

We established a radiomics nomogram by combining 
the radiomics signature and clinical signature and tested 
the diagnostic efficacy of the radiomic nomogram in the 
test cohort by drawing receiver operating characteristic 
(ROC) curves. The calibration efficiency of the nomogram 
was evaluated using calibration curves, and the calibration 
ability was assessed using the Hosmer-Lemeshow test. 
Additionally, we used decision curve analysis (DCA) to 
evaluate the clinical utility of the predictive models.

Statistical analysis

The data were statistically analyzed using R software (The 
R Foundation for Statistical Computing) and SPSS 26.0 
(IBM Corp., Armonk, NY, USA), and the pathology results 
were used as the gold standard. The measures were tested 
for normal distribution, with the χ2 test and 2-sample 
independent t-test being used to match the normal 
distribution. The Mann-Whitney test was used to compare 
nonnormally distributed continuous variables, and the χ2 
test was used to compare categorical variables. Predictive 
models were developed, and ROC curves were plotted to 
determine the accuracy, sensitivity, specificity, precision, F1 
values, and AUC values of the models. Calibration curves 
were also plotted. Differences were considered statistically 
significant at P<0.05.

Results

Clinical characteristics

Among the 379 cases of BI-RADS category 3–5 breast 
nodules, postoperative pathological results revealed 
255 cases of benign lesions (including 86 cases of breast 
adenosis, 146 cases of fibroadenoma, 4 cases of benign 
papillary tumors, 14 cases of intraductal papilloma, 
and 5 cases of granulomatous lobular mastitis) and 124 
malignant lesions (including 63 cases of ductal carcinoma 
in situ, 26 cases of lobular carcinoma in situ, 28 cases 

of invasive lobular carcinoma, and 7 cases of papillary 
carcinoma). The age of the patients ranged from 14 to 
88 years (mean age 46.22±15.51 years). Between the  
2 groups, there were no statistically significant differences 
in age (P=0.605), radiomics score values (P=0.892), or mass 
diameter (P=0.192). Univariate logistic analysis revealed 
statistically significant correlations in the training set 
between clinical characteristics of age, mass diameter, BI-
RADS classification, calcification status, and CDFI in 
patients with breast cancer. According to the multivariate 
logistic analysis, the clinical data of age, mass diameter, BI-
RADS classification, calcification, CDFI, and benign and 
malignant breast nodules showed a significant correlation 
(all P values <0.001) (Table 1), which was considered as a 
predictive model related to BI-RADS category 3 to 5. The 
AUC value of the test set of the clinical model was 0.937 
(95% CI: 0.885–0.989).

Feature selection and development of the model

Within the 5-mm ROI of the intratumor and peritumor, 
214 radiomics features were extracted, including 36 first-
order features, 28 morphological features, 150 second-order 
and higher-order texture features.

Of the 27 intratumoral and 37 peritumoral features 
screened, 15 optimal intratumoral features were selected 
by LASSO regression for inclusion in the intratumoral 
ultrasound radiomics model  (Figure 2A,2B ) .  The 
intratumoral ultrasound radiomics model (see Appendix 1) 
had an AUC value of 0.797 (95% CI: 0.739–0.855) in the 
training set and an AUC value of 0.780 (95% CI: 0.685–
0.875) in the test set. The performance of radiomics model 
is reported in Table 2.

Of the 27 intratumoral and 37 peritumoral features 
screened, 18 optimal intratumoral features and 21 optimal 
peritumoral features were selected by LASSO regression for 
inclusion in the intratumoral and peritumoral ultrasound 
radiomics model (Figure 2C,2D). The AUC value of the 
training set of the intratumoral and peritumoral ultrasound 
radiomics model was 0.910 (95% CI: 0.871–0.949), and 
the AUC value of the test set of the intratumoral and 
peritumoral ultrasound radiomics model was 0.840 (95% 
CI: 0.766–0.915).

Combined model construction and test

We constructed a comprehensive model incorporating 
intratumoral, peritumoral, and clinical risk factors to 

https://cdn.amegroups.cn/static/public/QIMS-23-283-Supplementary.pdf
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develop a nomogram (shown in Appendix 1) for predicting 
the benign or malignant nature of BI-RADS category 
3–5 breast nodules (Figure 3A). The intratumoral and 
peritumoral ultrasound radiomics features combined 
with clinical features had an AUC value of 0.950 (95% 
CI: 0.924–0.976) in the training set column line graph 
model and an AUC value of 0.960 (95% CI: 0.920–0.999) 
in the test set column line graph model (Figure 3B,3C). 
The calibration curve of intratumoral and peritumoral 
ultrasound radiomics features combined with clinical 
features shows that it had good calibration in both the 
training and test sets (Figure 3D,3E). The DCA indicated 
that the nomogram-based model incorporating intra- and 
peritumoral ultrasound radiomics and clinical features had 
a higher overall net benefit than did the other 2 models 
across the majority of the range of reasonable threshold 
probabilities, which means that the nomogram was useful 
for discriminating between benign and malignant lesion 
in BI-RADS category 3–5 nodules (Figure 4). The model 
of intratumoral and peritumoral ultrasound radiomics 
combined with clinical features was effective in reducing the 
number of unnecessary puncture biopsies in breast nodules, 
especially in BI-RADS category 4. When the nomogram 
score was greater than 0.5, the nodule had a high degree of 
malignancy and required be biopsy; when the nomogram 
score was less than 0.5, the nodule had a low degree of 

malignancy and could be followed up only.

Discussion

Although the use of BI-RADS criteria has improved the 
accuracy of the results, it is highly subjective and dependent 
on the diagnostic ability of the examining physician. There 
is often some overlap between the ultrasound presentation 
of benign and malignant breast tumors (24,25). Moreover, 
medical images often contain a wealth of information that 
reflects the biological behavior of the tumor—information 
that is difficult for the human eye to recognize. With 
radiomics, more objective and precise quantitative features 
can be extracted from medical images through high-
throughput calculations, and objective and quantitative 
data, such as tumor heterogeneity, can be used to describe 
tumor phenotypes and provide valuable information for 
tumor diagnosis and treatment (26). In the study by Hong 
et al. (27), the radiomics feature model they developed for 
diagnosing BI-RADS category 4–5 breast nodules achieved 
an AUC value of 0.886 on the test set. Similarly, in the 
study by Romeo et al. (19), the combination of radiomics 
and machine learning yielded an AUC value of 0.82. In 
our study, we used LASSO regression analysis to select 2 
morphological features, 2 first-order histogram features, 
and 11 texture features from the intratumoral radiomics 

Table 1 Clinical information for the training and test sets

Clinical features
Training set Test set

All Benign Malignant P value All Benign Malignant P value

Maximum diameter (mm) 17.83±10.71 15.21±7.07 23.68±14.55 <0.001 17.68±7.61 15.87±7.00 20.78±7.69 <0.001

Age (years) 45.95±15.78 40.49±13.40 58.13±13.81 <0.001 46.85±14.90 41.86±14.36 55.40±11.66 <0.001

Calcification <0.001 <0.001

None 192 (0.72) 152 (0.83) 40 (0.49) 96 (0.84) 67 (0.93) 29 (0.69)

Yes 73 (0.28) 31 (0.17) 42 (0.51) 18 (0.16) 5 (0.07) 13 (0.31)

CDFI <0.001 <0.001

None 162 (0.61) 136 (0.74) 26 (0.32) 83 (0.73) 62 (0.86) 21 (0.50)

Yes 103 (0.39) 47 (0.26) 56 (0.68) 31 (0.27) 10 (0.14) 21 (0.50)

BI-RADS <0.001 <0.001

3–4a 220 (0.83) 177 (0.97) 43 (0.52) 72 (0.63) 64 (0.89) 8 (0.19)

4b–5 45 (0.17) 6 (0.03) 39 (0.48) 42 (0.37) 8 (0.11) 34 (0.81)

Continuous data are presented as the mean ± standard deviation; categorical data are presented as number (ratio). BI-RADS category was 
determined by an ultrasound diagnostic physician. CDFI, color Doppler flow imaging; BI-RADS, Breast Imaging Reporting and Data System. 

https://cdn.amegroups.cn/static/public/QIMS-23-283-Supplementary.pdf
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regression model was used to select radiomics features. (A,B) The feature selection process of intratumoral features. (C,D) The feature 
selection process of intratumoral and peritumoral features combined. MSE, meansquared error; LASSO, least absolute shrinkage and 
selection operator.

Table 2 Diagnostic performance of model

Model Set AUC Accuracy Sensitivity Specificity F1

Intra-radiomics Training 0.797 0.785 0.534 0.905 0.73

Test 0.780 0.754 0.526 0.868 0.667

Intra + peri-radiomics Training 0.910 0.868 0.721 0.938 0.779

Test 0.840 0.745 0.500 0.868 0.567

Intra + peri + clinical Training 0.950 0.913 0.791 0.972 0.855

Test 0.960 0.921 0.816 0.974 0.873

AUC, area under the curve; intra, intratumoral features; peri, peritumoral features.

features and incorporated them into the intratumoral 
ultrasound radiomics model. The AUC value in the training 
set and test set was 0.800 (95% CI: 0.739–0.855) and 0.780 
(95% CI: 0.6854–0.875), respectively, slightly lower than 
values in the 2 studies mentioned above (19,27).

Previous ultrasound radiomics studies of breast tumors 
have focused mostly on intratumoral and not peritumoral 
radiomics features; however, there may be some important 
biological information in the peritumoral region of breast 
cancer, such as interstitial reaction, angiogenesis, and 
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peritumoral infiltration of lymphatic vessels and blood 
vessels (28,29). We attempted to combine intratumoral 
and peritumoral radiomics features and incorporated 
18 intratumoral radiomics features and 21 peritumoral 

radiomics features into our diagnostic model, whose AUC 
values improved from 0.797 to 0.904 in the training set 
and from 0.780 to 0.937 in the test set, with a statistically 
significant difference (P=0.04) (30). The combined 
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Peri signature AUC: 0.881 (95% CI 0.838–0.925)
Intra_peri signature AUC: 0.910 (95% CI 0.871–0.949)
Nomogram AUC: 0.950 (95% CI 0.924–0.976)
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Figure 3 A radiomics nomogram (A) was developed in which the intratumoral peritumoral ultrasound radiomics were combined with 
clinical and ultrasound features. The receiver operating characteristics of the radiomics nomogram, intratumoral model (intra signature), and 
intratumoral combined peritumoral model (intra_peri signature) in the differential diagnosis of breast nodules were compared between the 
training set (B) and the test set (C). The radiomics nomogram calibration curves for the training set (D) and test set (E). intra, intratumoral 
features; peri, peritumoral features; AUC, area under the curve; CI, confidence interval.
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intratumoral and peritumoral quantitative ultrasound 
features achieved an AUC of 0.94 in identifying benign 
and malignant breast lesions, compared with an AUC of 
0.83 when intratumoral quantitative ultrasound features 
were used alone. The diagnostic model developed in this 
study consisting of combined intratumoral and peritumoral 
features was superior to the radiomics model developed 
with intratumoral features alone. This is possibly because 
some BI-RADS category 3–5 nodules are difficult to 
identify through intratumoral radiomics features but can 
be identified through their peritumoral radiomics features. 
Therefore, peritumoral radiomic features may be potentially 
helpful in situations where intratumoral radiomic features 
alone cannot provide accurate discrimination. Furthermore, 
other studies have found that radiomic features based 
on X-ray, contrast-enhanced X-ray, MRI, and contrast-
enhanced MRI in both the intratumoral and peritumoral 
regions are associated with the classification of benign and 
malignant breast lesions (31), lymph node metastasis (32-34),  
estrogen receptor and progesterone receptor expression 
levels (35), human epidermal growth factor 2 (HER-2) and 
Ki-67 status (36), neoadjuvant chemotherapy effect (37), 
and the molecular subtype of breast cancer (38).

Our study found that many clinical factors were 
associated with benign and malignant breast lesions, 
inc luding pat ient  age ,  mass  d iameter,  BI-RADS 
classification, calcification status, and CDFI. Therefore, we 
developed a nomogram incorporating both intratumoral 

and peritumoral radiomics features and clinical features that 
demonstrated excellent diagnostic power for the differential 
diagnosis of benign and malignant BI-RADS category 3–5 
breast nodules. The proposed model nomogram achieved 
an AUC of 0.960, which was 0.12 higher than the AUC 
of 0.840 achieved by the intra- and peritumoral radiomics 
model (0.840); meanwhile, the sensitivity was significantly 
increased from 0.500 to 0.816 and the specificity from 0.868 
to 0.974, an improvement which may help to mitigate the 
incidence of false negatives and false positives (39). In our 
study, the high sensitivity and specificity observed might 
be attributed to the limited number of breast malignant 
tumor types included as well as the lack of racial diversity 
in our patient population. It has been suggested by some 
researchers that artificial intelligence models perform better 
on images that are similar to those in the training dataset, 
and caution must be taken when encountering potentially 
underrepresented subgroups in the training dataset, such 
as those related to racial groups and device vendors (40). In 
a previous study, intratumoral ultrasound radiomics were 
combined with BI-RADS classification to predict benign 
and malignant breast lesions (39). Their results showed that 
the model combining the radiomics score and the BI-RADS 
category showed better ability to discriminate between 
malignant and benign breast lesions (AUC: 0.928) than did 
the radiomics score model (AUC: 0.857) and the BI-RADS 
category model (AUC: 0.864). In Hong et al.’s study (27),  
a diagnostic model combining extracted intratumoral 
ultrasound radiomics features with patient age, BI-RADS 
category, and maximum lesion diameter showed a good 
ability to discriminate between malignant and benign breast 
lesions (AUC: 0.937). However, the diagnostic performance 
of the combined models used by Luo et al. (39) and Hong 
et al. (27) was worse than that of our model combining 
intratumoral and peritumoral radiomics feature with clinical 
features, demonstrating the superiority of our diagnostic 
model. The model constructed by Hong et al. (27), which 
was based on 496 BI-RADS category 4 or 5 lesions and 
consists of radiomics score, age, ultrasound-detected lesion 
diameter, and BI-RADS category, achieved an AUC of 
0.937 (95% CI: 0.893–0.965) in the test cohort. Meanwhile, 
Luo et al.’s model (27), which was based on 315 BI-RADS 
category 4 or 5 lesions and consists of radiomics score and 
BI-RADS category, yielded an AUC of 0.928 (95% CI: 
0.876–0.980). Of course, all the aforementioned studies have 
one limitation in common: they are retrospective studies. 
The true diagnostic efficacy of these models in clinical 
practice lacks test from large-scale, multi-institutional 
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Figure 4 Analysis of decision curves for each model in the test sets. 
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prospective trials conducted by independent third parties.
There are also some limitations to the present study. 

First, we employed a single-center study design and a small 
sample size, which might have resulted in reduced model 
stability. Additionally, the imbalance in the number of 
included benign and malignant cases may have some impact 
on the diagnostic performance of our models. Second, 
our study was also retrospective in nature; therefore, the 
possibility of selection bias cannot be excluded. Future 
research should consist of a prospective study to confirm our 
models. Third, both the intratumoral and peritumoral ROIs 
were outlined at the 2D level only, and the 3D features of 
the tumor were ignored. Fourth, 5 mm was chosen as the 
peritumoral ROI, and the peritumoral features beyond 
5 mm from the intratumoral ROI were not extracted, 
which could have missed some of the radiomics feature 
information of the peritumor. Finally, some of the clinical 
features (such as BI-RADS category, ROI segmentation) in 
this study are semiquantitative features, and the subjectivity 
of the evaluators might have influenced their results.

In summary, a combined diagnostic model based on 
intra- and peritumoral radiomics features combined with 
clinical and imaging features can more accurately identify 
benign and malignant BI-RADS class 3–5 breasts nodules, 
providing guidance to clinicians in their decision-making 
and thereby reducing the rate of missed diagnoses and 
avoiding unnecessary biopsies.
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Supplementary

Appendix 1

1. Rad-score (intra-tumoral ultrasound Radiomics model) = 0.3245283018867949 + 0.000366 * intra_original_firstorder_ 
Minimum − 0.000609 * intra_original_firstorder_TotalEnergy + 0.038934 * intra_original_glcm_Idmn + 0.009054 * intra_
original_glcm_MCC + 0.008807 * intra_original_glrlm_LongRunHighGrayLevelEmphasis + 0.035892 * intra_original_
glrlm_LowGrayLevelRunEmphasis + 0.048566 * intra_original_ glrlm_RunEntropy + 0.067070 * intra_original_glszm_
GrayLevelNonUniformity − 0.072016 * intra_original_glszm_LargeAreaHighGrayLevelEmphasis + 0.019576 * intra_
original_glszm_SizeZoneNonUniformity + 0.005535 * intra_original_glszm_SmallAreaLowGrayLevelEmphasis − 0.013511 
* intra_ original_ngtdm_Contrast + 0.168121 * intra_original_shape_Elongation + 0.113672 * intra_original_shape_
Maximum3DDiameter + 0.055753 * intra_ original_shape_SurfaceVolumeRatio.

2. Rad-score (intra-tumoral combined peri-tumoral ultrasound Radiomics model) = 0.3245283018867948 + 0.010431 * 
intra_original_firstorder_Minimum − 0.012548 * intra_original_firstorder_TotalEnergy + 0.044222 * intra_original_glcm_
Contrast + 0.038485 * intra_original_glcm_Idmn + 0.026819 * intra_original_glcm_Imc1 − 0.035756 * intra_original_
gldm_GrayLevelNonUniformity + 0.004343 * intra_original_glrlm_LongRunHighGrayLevelEmphasis + 0.036033 * 
intra_original_glrlm_LowGrayLevelRunEmphasis + 0.032856 * intra_original_glrlm_RunEntropy + 0.001761 * intra_
original_glrlm_RunPercentage + 0.045726 * intra_original_glrlm_ShortRunEmphasis − 0.054379 * intra_original_glszm_
LargeAreaHighGrayLevelEmphasis + 0.038748 * intra_original_glszm_SizeZoneNonUniformity − 0.057946 * intra_
original_glszm_ZoneEntropy − 0.043282 * intra_original_ngtdm_Busyness − 0.007698 * intra_original_ngtdm_Contrast 
+ 0.042842 * intra_original_ngtdm_Strength + 0.045331 * intra_original_shape_SurfaceVolumeRatio + 0.114245 * peri_
original_firstorder_10Percentile − 0.096648 * peri_original_firstorder_Maximum − 0.062812 * peri_original_firstorder_
Minimum − 0.011152 * peri_original_firstorder_RobustMeanAbsoluteDeviation − 0.017004 * peri_original_glcm_
ClusterProminence + 0.135194 * peri_original_glcm_Idn − 0.021447 * peri_original_glcm_Imc1 + 0.018190 * peri_
original_glcm_MaximumProbability − 0.073709 * peri_original_gldm_DependenceVariance + 0.010953 * peri_original_
glrlm_GrayLevelNonUniformity − 0.069274 * peri_original_glrlm_LongRunLowGrayLevelEmphasis + 0.071068 * peri_
original_glszm_GrayLevelNonUniformity − 0.016455 * peri_original_glszm_GrayLevelVariance + 0.088708 * peri_original_
glszm_LowGrayLevelZoneEmphasis + 0.105085 * peri_original_glszm_ZoneEntropy − 0.040601 * peri_original_glszm_
ZoneVariance + 0.013239 * peri_original_ngtdm_Busyness − 0.003644 * peri_original_ngtdm_Coarseness + 0.160328 * 
peri_original_shape_Elongation − 0.006252 * peri_original_shape_SurfaceVolumeRatio + 0.157836 * peri_original_shape_
VoxelVolume)


