Article Abstract

Gold nanorods for target selective SPECT/CT imaging and photothermal therapy in vivo

Authors: Boseung Jang, Seonhwa Park, Se Hun Kang, Joa Kyum Kim, Seok-Ki Kim, In-Hoo Kim, Yongdoo Choi


The development of theranostic agents with high detection sensitivity and antitumor efficacy at low concentration is a challenging task for target selective imaging and therapy of cancers. In this study, folate-conjugated and radioactive-iodinelabeled gold nanorods (GNRs) were designed and synthesized for target selective SPECT/CT imaging and subsequent thermal ablation of folate-receptor-overexpressing cancers. Both (ortho-pyridyl) disulfide-poly(ethylene glycol)-folate and a short peptide, H2N-Tyr-Asn-Asn-Leu-Ala-Cys-OH, were conjugated on the surface of the GNRs through thiol chemistry. The tyrosine in the peptide sequence was introduced for radioactive-iodine labeling through an iodine-tyrosine interaction. The labeling efficiency of radioactive iodine was more than 99%. Radiochemical stability tests on iodine-125-labeled GNRs in human serum showed that 91% of the iodine-125 remained intact on the GNRs after incubation for 24 h. In vitro and in vivo results in this study confirmed the potential utility of folate-conjugated and iodine-125-labeled GNRs as smart theranostic agents. This type of platform may also be useful for the targeted SPECT/CT imaging and photothermal therapy of inflammatory diseases such as atherosclerosis and arthritis, in which folate-receptor-overexpressing macrophages play pivotal roles.


  • There are currently no refbacks.