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Introduction

T1rho is the time constant of spin-lattice relaxation 
in rotating frame, which characterizes relaxation of 
magnetization under influence of a radiofrequency (RF) 
field. Conventional spin-lattice relaxation (T1) is particularly 
sensitive to processes in the lattice which occurs at high 
frequency near Larmor frequency (i.e., in MHz range). 
In contrast, T1rho is discovered to be sensitive to lattice 
processes occurring at much lower frequency close to the 
Rabi frequency of the spin-lock RF pulse, which typically is 
in the range of a few hundred hertz. Since slow motion in 
lattice is associated with macromolecular, such as proteins, 
T1rho is anticipated to be useful for assessment of the 
properties of macromolecular environment in tissue which 

conventional methods cannot offer. 
Quantitative T1rho imaging has been investigated 

for many clinical applications (1-25). One of the greatest 
challenges of T1rho quantification in routine clinical 
practice is its robustness. A number of sources can cause 
quantification errors. A great deal of effort has been spent 
to develop methods to compensate these errors. It is the 
purpose of this article to review and discuss quantification 
errors in T1rho and the correction methods which are 
currently available. 

The basics of T1rho

T1rho is often measured by the spin-lock technique 
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described by Redfield (26). T1rho preparation (prep) 
typically starts with a 90-degree RF pulse (tip-down RF) to 
flip magnetization into transverse plane. An on-resonance 
continuous wave RF pulse (termed spin-lock RF pulse) is 
then applied in parallel to the magnetization, which causes 
the magnetization to process around it and appears to be 
“spin-locked”. During the time of spin-lock (TSL), the 
magnetization relaxes under the influence of the spin-lock RF 
pulse with time constant of T1rho instead of conventional 
T2. After the spin-lock process, the magnetization is flipped 
back into longitudinal direction by another 90-degree RF 
pulse (tip-up RF). A crusher is then followed to dephase the 
residual signal in transverse plane. The magnetization after 
such T1rho prep can be expressed as: 

I(TSL) = I0 e
−TSL/T1rho [1]

where I0 is a constant which is independent of TSL.
Various 2D or 3D data acquisitions methods can be used 

after T1rho prep to collect imaging data. To quantify T1rho 
value, data sets with different TSL are acquired and then 
fitted to Eq. [1]. Fat suppression is usually applied to avoid 
significant banding artifacts since spin-lock is susceptible to 
chemical shift of fat. Figure 1 shows a schematic diagram of 
conventional continues wave T1rho prep and the imaging 
data acquisition. 

Compensation of B1 RF inhomogeneity

The conventional T1rho prep method shown in Figure 1 is 
susceptible to B1 RF inhomogeneity. At the presence of B1 
RF inhomogeneity, the expected 90-degree tip-down RF 
pulse flips magnetization to an orientation deviated from 
transverse plane. Consequently, the magnetization rotates 
at an angle around the spin-lock RF pulse during TSL. 
After the tip-up RF pulse, the longitudinal magnetization 
becomes a complicated function of TSL shown below: 

I(TSL) = I0 (sin
2θe−TSL/T1rho + cosαcos2θe−TSL/T2rho) [2]

where θ is the actual flip angle of the tip-up/tip-down RF 
pulse, T2rho is the magnetization decay rate in the plane 
perpendicular to the spin-locking RF pulse, and α is the total 
flip angle during spin locking which is proportional to TSL. 
The presence of cosα term results in spatial modulation of 
signal which manifests as banding artifacts in acquired images. 

By reversing the amplitude or phase of the second half 
of the spin-locking RF pulse, the net flip angle during spin 
lock becomes zero. Consequently, the cosα term is canceled 
out in Eq. [2]. This is the rotary echo approach proposed 

by Charagundla et al. (27), which is commonly used to 
address B1 RF inhomogeneity effect in T1rho imaging. 
Figure 2A shows a schematic diagram of this method. It can 
be shown that with rotary echo approach, the longitudinal 
magnetization after T1rho prep is: 

I(TSL) = I0 (sin
2θe−TSL/T1rho + cos2θe−TSL/T2rho) [3]

Note that compared to the conventional T1rho prep, 
cosα term is eliminated using rotary echo method. However, 
the T2rho term remains, which results in quantification 
error if mono-exponential relaxation model of Eq. [1] is 
used to obtain T1rho value. 

It was reported that B1 inhomogeneity effect on 
continuous wave T1rho prep could be fully compensated by 
a phase cycling method (28). In this method, two data sets 
are acquired with opposite phase of the tip-up RF pulse. 
These two data sets are then subtracted from each other. 
The longitudinal magnetization after subtraction is: 

I(TSL) = 2I0 sin
2θe−TSL/T1rho [4]

Note compared to the rotary echo approach, the 
second term in Eq. [3] is completely eliminated after phase 
cycling. Therefore, the mono-exponential decay model 
depicted by Eq. [1] can be used to fit T1rho accurately 
after phase cycling without being compromised by B1 RF 
inhomogeneity. 

The apparent downside of the phase cycling method 
is it doubles scan time, even though the signal-to-noise 
ratio (SNR) is elevated to a level similar to that of 2 NEX 
acquisitions. For certain T1rho imaging pulse sequences 
which requires phase cycling to remove T1 relaxation effect 
during data acquisition, such as 3D magnetization-prepared 
angle-modulated partitioned k-space spoiled gradient echo 

Figure 1 A schematic diagram of conventional T1rho prep using 
continuous wave spin-lock approach. A 90-degree RF pulse (tip-
down RF) flips magnetization into transverse plane. A RF pulse 
is then applied in parallel to magnetization to “spin-lock” the 
magnetization. After time of-spin-lock (TSL), the magnetization 
is flipped back to longitudinal direction by another 90-degree RF 
pulse (tip-up RF). A crusher is then used to dephase residual signal 
in transverse plane. 2D or 3D data acquisition methods are used to 
collected data after T1rho prep. RF, radiofrequency.

2D or 3D data acquisition

Spin-lockθy

−90x90x
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snapshots (MAPSS) (29), there is no scan time penalty to 
use this method for B1 inhomogeneity compensation. 

Adiabatic RF pulses are commonly used to address 
B1 RF inhomogeneity in MRI system. Researchers have 
used adiabatic half-passage (AHP) pulses to address B1 
inhomogeneity effect on continuous wave T1rho prep 
(6,30). In these methods, AHP pulses are used to generate 
uniform 90-degree excitation, followed by continuous 
wave spin-lock RF pulses. The magnetization is either 
flipped back to longitudinal direction by another AHP 
pulse followed with imaging data acquisition (6), or directly 
followed with imaging module for data collection (30). 

Compensation of B0 field inhomogeneity

The presence of B0 field inhomogeneity can cause 
image artifacts to T1rho-weighted imaging and T1rho 
quantification error. Shimming is highly recommended for 
T1rho imaging. However, shimming alone usually cannot 

eliminate off-resonance effect. 
When there is off-resonance, the effective magnetic field 

in the rotating frame during spin-lock is the combination 
of B1 RF and B0 field. The orientation of this effective 
magnetic field with respect to transverse plane is:

[5]01

1
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Note this angle diminishes when the amplitude of 
B1 increases. Therefore, a simple way to overcome the 
adversary effect from off-resonance during spin-lock is to 
increase the amplitude of the spin-lock RF pulse. However, 
the maximum RF amplitude is limited by the power of RF 
amplifier. High amplitude combined with long duration of 
spin-lock RF also leads to elevated special absorption rate 
(SAR). The situation is worsened when body RF transmitter 
rather than local transceiver coil is used. 

Dixon et al. (2) reported a method to compensate off-
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Figure 2 RF pulse clusters used to compensate B1 RF and B0 field inhomogeneity for continues wave spin-lock. (A) Rotary echo approach 
for B1 RF inhomogeneity compensation. The phase of the second half of spin-lock is reversed; (B) the composite RF approach for B0 field 
inhomogeneity compensation. A 135-degree RF pulse with same phase as spin-lock RF pulse is played out before and after spin-lock. The 

amplitude ratio between the composite RF pulse and spin-lock RF pulse is ( ); (C) simultaneous compensation of B1 RF and B0 field 
inhomogeneity. A 180-degree refocusing RF pulse is inserted in the middle of rotary echo and the phase of the tip-down RF is reversed 
compared to conventional method; (D) combination of the composite RF pulse and a phase cycling method for simultaneous B1 RF and B0 
field inhomogeneity compensation. Two data sets are acquired with opposite phase of the tip-up RF pulse and subtracted from each other to 
yield final T1rho-preped images. No particular requirement of the amplitude ratio between the composite RF pulse and the spin-lock RF 
pulse. RF, radiofrequency.
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resonance effect during spin-lock by using composite RF 
pulses. In this approach, a 135-degree RF pulse with phase 
same as spin-lock RF pulse is inserted both before and after 
spin-lock, as shown in Figure 2B. The amplitude of the 
composite RF pulses satisfies: 

[6]( )1 11 2C SLB B= + ⋅

where 1
CB  and 1

SLB  are the amplitude of the composite 
RF pulse and the spin-lock RF pulse, respectively. For 
spin-lock RF pulse at 500 Hz, which is commonly used in 
practice, however, the amplitude of the composite RF pulses 
specified by Eq. [6] is approximately 1.2 kHz, which may 
not be practical to use since it is close to the power limit of 
RF amplifier equipped in a modern clinical scanner. 

Simultaneous compensation of B1 RF and B0 
field inhomogeneity

The methods described in previous sections are aimed 
for compensation of either B1 RF inhomogeneity or B0 
field inhomogeneity. The combination of both of them 
can compromise the effectiveness of these methods and 
methods which can address B1 RF and B0 inhomogeneity 
effect simultaneously are needed.  

One method with aim to address this issue is proposed by 
Zeng et al. (31). In this method, a 180-degree refocusing RF 
pulse with the same phase as spin-lock RF pulse is inserted 
in the middle of the rotary echo RF pulse, which is used to 
compensate off-resonance effect accrued during spin-lock. 
However, it is shown that this approach can be sensitive to 
B1 RF inhomogeneity (32). Incomplete compensation can 
arise when the flip angle of tip-down/up RF pulse is not 
exactly 90 degree and/or the flip angle of the refocusing 
pulse is not exactly 180 degree. 

Witschey et al. (32) discovered that by reversing the phase 
of the tip-down RF pulse in the method reported by Zeng 
et al. (31), the same T1rho prep becomes insensitive to the 
flip angle of tip-down/up RF pulses. A schematic diagram 
of this approach is shown in Figure 2C. The effectiveness 
of this method for simultaneous compensation of B1 and B0 
inhomogeneity, however, still can be compromised if the 
flip angle of the refocusing RF pulse is not 180 degree. This 
imperfection may be mitigated by increasing the amplitude 
of the refocusing pulse or using B1 insensitive 180-degree 
refocusing pulses (32). 

By combining the composite RF pulse reported by Dixon 
et al. (2) with phase cycling method, we can also achieve 
simultaneous compensation of B1 and B0 field inhomogeneity 

for continues wave T1rho prep (28). A schematic diagram of 
this approach is shown in Figure 2D. It is reported that this 
method is effective when the amplitude of the composite 
RF pulse deviates from that specified by Eq. [6], therefore 
insensitive to B1 inhomogeneity effect (28). The downside of 
this method, however, is the prolonged scan time. 

Spin-lock using Adiabatic RF pulse with 
insensitivity to B1 RF and B0 field inhomogeneity 

Conventionally spin-lock is implemented by continuous 
wave RF pulses. The methods we described in previous 
sections are developed to improve the robustness of this type 
of spin-lock approach under the presence of B1 RF and B0 
field inhomogeneity. A different way to achieve spin-lock is 
to use adiabatic RF pulses (33-35). The hyperbolic secant 
RF pulses used in these methods for spin-lock are inherently 
insensitive to B1 RF and B0 field inhomogeneity (34-40). In 
the studies reported in references (34-40), a train of adiabatic 
full-passage (AFP) hyperbolic secant RF pulses are applied 
to create spin-lock contrast. During the application of these 
pulses, both amplitude and frequency are modulated, which 
leads to variation of amplitude and orientation of effective 
field in time. When the adiabatic condition is satisfied, 
namely, the orientation of the effective magnetic field 
changes slower than the rotation of magnetization about this 
effective field (41), which can be achieved by sufficiently high 
B1 amplitude or a slow frequency sweep, the spins are spin-
locked along the effective field and decay at a time varying 
T1rho rate. By fitting the images collected with different 
levels of adiabatic T1rho contrast to a mono-exponential 
decay model, the average T1rho relaxation rate is measured 
over the pulse duration. The measured adiabatic T1rho 
value varies when different types of adiabatic RF pulses 
with different amplitude and frequency modulation is used. 
Recently, a type of gradient modulated adiabatic pulses is 
reported for adiabatic T1rho imaging which can achieve 
reduced artifacts from B1 and B0 field inhomogeneity, and the 
same time reduced power deposition, short scan time, and 
slice selectivity (42).

Compared to continuous waveform spin-lock, T1rho 
varies during the adiabatic spin-lock since the amplitude 
and frequency of the pulse is modulated during the time 
course. Consequently, the measured T1rho is an average 
value over the duration of adiabatic pulse. The clinical use of 
T1rho quantification using adiabatic spin-lock is not as well 
understood as that using continuous waveform spin-lock, and 
therefore further clinical study of this method is needed. 
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Errors from data acquisition and the correction 
methods

There is a multitude of imaging sequences which can be 
used to collect data after T1rho contrast is imparted to the 
magnetization. The imaging sequence usually is put after 
T1rho prep, as shown in Figure 1. With inclusion of particular 
imaging sequence, the whole pulse sequence of T1rho imaging 
inherits its sensitivity to system imperfection, i.e., Fast (Turbo) 
Spin Echo is sensitive to factors causing the violation of 
CPMG condition. In addition, the signal evolution during 
imaging sequence may complicate the quantification of T1rho 
and care is needed to address these issues. 

Borthakur et al. (43) reported a 3D T1rho imaging approach 
based on steady state spoiled gradient echo acquisition. Only 
one phase encoding line is acquired for every T1rho prep in 
this approach. The signal at steady state is expressed by the 
following equation which is used to fit the T1rho value: 

[7]( )
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where α is the flip angle, and TR is the repetition time. 
Eq. [7] indicates that erroneous value of α due to B1 
inhomogeneity and inaccurate prior knowledge of T1 can 
lead to T1rho quantification error in this method. 

Li et al. (29) reported a 3D quantitative T1rho imaging 
method termed MAPSS which is based on segmented 
SPGR acquisition. The data is acquired during the 
transient signal evolution toward steady state. A primary 
concern of direct use of segmented SPGR acquisition for 
T1rho quantification is that T1 relaxation during imaging 
data acquisition can degrade T1rho contrast. As shown by 
Li et al. (29), the transverse magnetization after the nth RF 
pulse during SPGR readout can be expressed as:

Mxy(n) = A(n) I0 e
−TSL/T1rho + B(n) [8]

where A(n) and B(n) are complicated functions of 
relaxation parameters and pulse sequence parameters. 
The expression of these two terms can be found in 
reference (29). Note the term B(n) in Eq. [8] is an additive 
term and impacts quantification accuracy if not corrected. 
To address this issue, Li et al. (29) proposed to acquire two 
data sets with opposite phase of the tip-up RF pulse, and 
then subtract them from each other, which yield: 

Mxy(n) = 2A(n) I0 e
−TSL/T1rho [9]

Note the magnitude image after subtraction can be fitted 

to a mono-exponential decay model to calculate T1rho 
without error. 

For multi-slice 2D imaging, if multiple slices are 
acquired after one T1rho prep, T1 relaxation during the 
time course after T1rho prep can lead to quantification 
error when Eq. [1] is used as the relaxation model (44), in 
a similar manner as in MAPSS. The same phase cycling 
method has been used to address this issue in multi-slice 
quantitative T1rho imaging (44). 

Fast (or Turbo) Spin Echo (FSE or TSE) with long 
echo train has also been reported for quantitative T1rho 
imaging (45,46). In FSE (TSE) acquisition, when the 
CPMG condition is met and the crusher gradient is 
sufficient so that FID is eliminated, T1 recovery during 
the readout is eliminated. The point spread functions for 
all TSL values are identical and relative image intensity 
between images acquired with different TSL values 
depends only on T1rho exponential decay during spin 
lock. Therefore, no phase cycling is needed to address 
T1 relaxation effect during long readout of FSE, which 
makes FSE based T1rho imaging highly SNR efficient. 
Compared to 3D gradient echo acquisition, the downside 
of 3D FSE acquisition, however, is increased echo time 
which is unfavorable when imaging tissue with relative 
short T2, increased sensitivity to eddy current, and 
potential blurring when long echo train is used (46). 

Balanced gradient echo sequence (47) can also be used 
for fast quantitative imaging. Instead of acquiring imaging 
data in steady state after a number of dummy pulses, signal 
has to be acquired during transient stage in this approach. 
Otherwise, contrast loss during the transient decay can 
result in elevated T1rho estimation (47). Collecting date 
during transient stage in balanced gradient echo sequence 
can cause image blurring. The authors proposed to design a 
filter applied in k-space to address this issue (47). 

Errors from insufficient SNR and the correction 
methods

SNR plays a critical role in quantitative imaging. There 
is increasing interest in acquiring parametric map with 
high resolution and/or fast scan, which inevitably costs 
SNR. Care must be used to avoid quantification error from 
insufficient SNR. 

In MRI system, noise follows Gaussian distribution 
with zero mean in frequency domain. The commonly used 
linear regression approach, which is based on weighted 
least square fit of the logarithm of the magnitude image, 
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has advantage of simplicity and fast computation time. 
However, the logarithm transform of the image causes the 
noise distribution no longer to be normal, which violates 
the assumption underneath the least square fit. The 
quantification using this approach is still approximately 
accurate when SNR is high, but large bias appears when 
SNR is low (48). Non-linear fit of Eq. [1] without applying 
logarithm transform (49,50) may improve quantification 
accuracy. However, large bias remains since the noise in 
magnitude image can deviate from Gaussian distribution 
significantly with a non-zero mean when SNR is low (49,50). 

Truncation method is used in some studies to address 
the SNR issue. In this method, data sets acquired with long 
TSL are discarded if they are regarded with insufficient 
SNR. However, such practice is not preferred since 
quantification accuracy requires the entire decay curve, 
including long TSL, is sampled (51). 

A common practice of quantitative imaging is to measure 
parameter within a ROI instead of on one single pixel. 
SNR can be greatly increased by averaging signal within 
ROI. For such practice, it is preferred to take average of 
ROI within a complex image instead of magnitude image 
to avoid significant error due to non-zero mean of noise in 
magnitude image at low SNR. The downside of the ROI 
approach is reduced resolution of acquired parametric map. 

A modification of the relaxation model has been 
investigated to address noise issue in tissue parameter 
quantification. Instead of fitting using Eq. [1], it is proposed 
by Mosher (52) to fit the magnitude image using the 
following equation:

I(TSL)=I0 e
−TSL/T1rho + C [10]

where C is an unknown constant. However, it is reported 
that, even though this model improves the accuracy of 
relaxation parameter estimation at low range, it prone to 
underestimate relaxation parameter, especially for long 
relaxation (49). 

Compared to Eq. [10], a more accurate model to 
include noise in magnitude image for tissue parameter 
quantification is reported by Miller and Joseph (53). For 
a single receiver system, without partial Fourier, parallel 
imaging, and other advanced reconstruction, Miller and 
Joseph discovered that the mean of the square of magnitude 
image can be expressed as (53): 

2 2 22trueI I σ〈 〉 = + [11]

where Itrue is the image in absence of noise, and σ is the 
standard deviation of noise in either real or imagery 

channel. Therefore, we can subtract noise 2σ2 from the 
mean of square of image intensity before fitting the data 
to a mono-exponential decay model (53). This approach 
was shown to be more accurate than linear or non-linear fit 
using Eq. [1] (49). 

For single receiver system, the magnitude image follows 
Rician distribution (54-56). Raya et al. (49) calculated the 
analytical solution of the mean of image intensity (termed 
noise corrected exponential function), and then estimate 
relaxation parameter by non-linear fitting of magnitude 
image to this noise corrected exponential function. They 
demonstrated that such fit method results in precisions 
comparable to the best achievable precisions determined by 
Cramer-Rao lower bound. 

One limitation of these noise-corrected approaches is that 
they are only applicable for single receiver system. Hardy 
and Andersen (50) established a noise-corrected approach 
for phased array system. Ignore noise correlation between 
receivers in phased array and assume they are statistically 
independent; the magnitude image of standard square-root-
of-sum-of-square reconstruction follows non-central chi 
distribution (57). Hardy and Andersen proposed a lookup 
table approach where the difference between the magnitude 
image and the true image caused by noise is pre-calculated 
offline based on the analytical expression of non-central chi 
distribution. These values are stored in a lookup table and the 
corresponding amount of correction for particular imaging 
case is read from the table and applied to the magnitude 
image for correction. A mono-exponential decay model based 
on non-linear least square fit is then applied to the corrected 
image to estimate relaxation parameter. 

Another approach which is applicable for parameter 
quantification using phased array is maximum likelihood 
method (48). This method derives the best estimate of 
relaxation parameter by maximizing the joint distribution 
of magnitude image at different TSL (48,50). Hardy and 
Andersen show that the maximum likelihood approach and 
the noise-corrected lookup table approach provide very 
close estimation, but the great difference in computational 
complexity and computational time makes the lookup table 
approach a favorable choice (50). 

Summary 

The spin-lock technique used to generate T1rho contrast 
provides a mechanism to probe into macromolecular 
environment which conventional imaging methods cannot 
offer. Consequently, T1rho quantification has potential in 
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many clinical applications. However, despite the promising 
outcomes of the published studies, it remains challenging 
to achieve robust and accurate T1rho quantification in 
routine clinical practice. In this article, the major sources 
which can cause errors to T1rho quantification and the 
correction methods are reviewed. The review is focused on 
error sources including system imperfections, inappropriate 
pulse sequence design, and insufficient SNR. For certain 
tissue types, additional factors which may confound T1rho 
quantification can arise due to inherent tissue properties. 
For example, magic angle effect (58,59) and multiple 
relaxation components (60-62) are commonly observed 
when imaging cartilage and fibrocartilage. Review of these 
confounding factors for relaxometry due to inherent tissue 
properties is not included in this article. 
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