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Introduction 

Bronchopulmonary dysplasia (BPD) is a chronic lung 
condition that affects premature infants who receive 
supplemental oxygen (hyperoxia) or ventilator support 
for long periods of time. Studies have shown that arrest 
of alveolar development is a hallmark of BPD caused by 
either oxygen or mechanical ventilation. We have observed 
significant abnormalities in lungs prepared from Bcl-2 
null mice perhaps as a result of increased oxidative stress 
and reduced angiogenesis (1). Our hypothesis is that 
oxidative stress plays a key role in the development of 
vascular dysfunction associated with BPD. We used optical 

cryoimaging to investigate the mitochondrial redox state of 
the tissue related to oxidative stress and pathogenesis of BPD.

Anatomical and functional information of tissue can be 
obtained by fluorescence imaging techniques via intrinsic 
fluorophores or exogenous tagged proteins (2) and are 
used to probe tissue redox state and energy homeostasis 
in various organs with a high sensitivity and specificity 
for discriminating between diseased and non-diseased 
tissue (3). These fluorescence images are able to monitor 
tissue metabolic state, as an indicator of cellular oxygen 
consumption (4,5). 

NADH and FAD (oxidized form of FADH2), two 
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mitochondrial metabolic coenzymes and the primary 
electron carriers in oxidative phosphorylation, are intrinsic 
fluorophores and can be monitored using fluorescent 
imaging. It has been shown that the ratio of these 
fluorophores, NADH/FAD, called the mitochondrial redox 
ratio (RR) (6-9), is a marker of the mitochondrial redox 
and metabolic state of tissue and a change in RR is an index 
of a change in lung tissue bioenergetics. Here we tested 
whether deficiency in Bcl-2, an anti-apoptotic protein with 
important role in angiogenesis (10), results in increased 
oxidative stress and attenuation of lung angiogenesis 
contributing to PBD.

Methods 

As our injury model, lungs from three groups of mice were 
studied: Bcl-2 +/+, Bcl-2 -/- (global Bcl-2 null) and Bcl-2 
VE-cad (Bcl-2 only deleted in the endothelium). Bcl-2 +/+ 
lungs were used as control and Bcl-2 VE-cad and Bcl-2 -/- 
mice were used as potential models of BPD. The mice were 
sacrificed at 3 weeks of age. 

Lung tissue metabolic state was preserved by rapid 
freezing, immediately after harvesting the tissue, in chilled 
isopentane (2-methyl butane, Fisher Scientific, IL) within 
liquid nitrogen (LN2, –196 ℃) then embedded in a 
customized fluorescent-free black mounting medium for 
cryo fluorescence imaging.

Cryoimaging or Low-temperature fluorescence imaging 
provides 3-D fluorescence images of cryopreserved intact 
organs. Imaging in lower temperatures (–40 ℃) guaranties 
a higher quantum yield of fluorescence of NADH and FAD 
as compared to room temperature (11-13). Cryoimager is 
an automated image acquisition instrument consisted of 
hardware and software designed to acquire fluorescence 
images of tissue sections. Image acquisition and the 
instrument have been previously described (14). Briefly each 
sample is sequentially sliced using a computer controlled 
microtome and NADH and FAD fluorescent images is 
captured for each slice using a CCD camera.

For the Image Processing step, the composite images 
were created using all the image slices for each lung, for 
both NADH and FAD signals. The ratio of NADH and 
FAD (NADH/FAD) was calculated voxel by voxel, using 
Matlab. For each lung, a histogram of RR values was 
created, and the mean (or first moment) of this histogram 
was calculated for the whole volume of the tissue according 
to Eq. [1].
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Statistical comparisons were also carried out on a 
population of N=3 for control and N=3 for Bcl-2 VE-cad 
and N=4 for control and N=9 for Bcl-2 -/- mice lungs using 
a one-tailed student’s t-test, with P<0.05 for each group as 
the criterion for statistical significance.

Results 

Figure 1A shows the 3-D rendering of NADH and FAD 
fluorescence signals and their ratio (RR = NADH/FAD) 
from representative lungs of each of the three groups (Bcl-
2 VE-cad vs. Bcl-2 +/+ on top and Bcl-2 -/- vs. Bcl-2 +/+ on 
bottom). As expected, mice with global Bcl-2 null and Bcl-2 
VE-cad showed a decreased NADH signal and an increased 
FAD signal and as a result decreased RR in respect to the 
control mice (26% decrease for Bcl-2 VE-cad and 47% 
for Bcl-2 -/-) which implies generation of more ROS and 
oxidative stress. Bcl-2 -/- mice also had more ROS and 
oxidative stress compared with Bcl-2 VE-cad. Figure 1B 
shows histograms of RR for the lungs. The mean values 
of these histograms suggest a more reduced mitochondrial 
redox state for Bcl-2 +/+ lung, and more oxidized 
mitochondrial redox state for both Bcl-2 VE-cad and Bcl-
2 -/-. Figure 1C shows the average ± SE (standard errors) of 
the mean values of the RR histograms for the three groups 
of mice, which shows a significant decrease (P<0.021) in the 
NADH redox in Bcl-2 VE-cad and Bcl-2 -/- lungs.

Discussion and conclusions 

We have previously demonstrated the utility of cryoimaging 
for evaluating the redox status of tissue mitochondrial 
coenzymes NADH and FAD in intact lungs in another 
model of BPD (combining injuries due to ventilation with 
elevated oxygen concentration and bacterial infection) (15). 
We have shown that the RR, NADH/FAD, is an index of 
lung tissue mitochondrial redox state, and is an important 
determinant of mitochondrial bioenergetics. Here we 
have shown that mice lacking Bcl-2 demonstrate increased 
oxidative stress as seen in BPD phenotype. Bcl-2 is a key 
mediator of downstream events that occur in response to 
both pro- and anti-angiogenic factors, including VEGF and 
thrombospondin-1 (TSP1), respectively (16). The important 
role Bcl-2 plays during angiogenesis is demonstrated by the 
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inability of Bcl-2 -/- endothelial cells to undergo capillary 
morphogenesis and sprouting angiogenesis (17). 

A clearer understanding of mitochondrial dysfunction 
and the role Bcl-2 plays in this process is critical for 
elucidating the role of mitochondrial bioenergetics in 
pulmonary developmental arrest and can be further used 
in prevention of BPD-like injuries. Our studies show that 
deficiency of Bcl-2 in the endothelium is only partially 
responsible for increased oxidative stress. The identity of 
additional cellular components to increased oxidative stress 
in the global null mice awaits further investigation.

Other endogenous fluorophores in the tissue including 
collagen and elastin would not be expected to contribute 
in variations of mitochondrial redox state (18,19). 
Contribution of cytosolic NADPH, which has the same 
fluorescence characteristics as NADH, to the NADH 
fluorescent signal is considered to be small (20) since its 
concentration and quantum yield is much smaller than 
NADH (21,22).

NADH and FAD data provide information regarding 

tissue redox and mitochondrial bioenergetics, a truer and 
more sensitive early measure of organ function. Because 
NADH and FAD signals can be detected through fiber 
optic probes placed on the surface of the lung, RR data 
could be obtained either intraoperatively or through tube 
thoracostomies (frequently placed for clinical indications 
in patients with severe lung injury). Our studies support 
the capacity of fluorescence imaging to detect pulmonary 
oxidative injury, and set the stage for in vivo studies and 
further translation to clinical arenas.
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Figure 1 (A) Fluorescence images of from left to right NADH, FAD and NADH redox in a Bcl-2 VE-cad vs. Bcl-2 +/+ mouse lung on top 
and Bcl-2 -/- vs. Bcl-2 +/+ on the bottom; (B) histogram of control (blue) and Bcl-2 VE-cad lung (red) on top and control (blue) and Bcl-
2 -/- lung (red) on bottom; (C) bar graph showing the means and standard errors of the mean value of mitochondrial redox ratio of control 
and Bcl-2 VE-cad on top and control and Bcl-2 -/- on bottom. *, shows statistical significant difference P<0.021.
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