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Introduction

Stroke is a pervasive and critical cause of morbidity 
and mortality that affects the global population (1). 
Atherosclerotic disease in the carotid artery bifurcation area 
is the primary cause of stroke in 25% of patients with this 

condition (2). Carotid bifurcation is where the common 

carotid artery (CCA) divides into the external carotid artery 

(ECA) and internal carotid artery (ICA). Due to the blood 

vortex that forms in this bifurcation area and the increased 

shear force on the vessel wall, atherosclerotic plaque, 
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which is composed of fat, cholesterol, calcium, and other 
substances found in the blood, accumulates, resulting in a 
narrowing or blockage of blood flow to the brain.

The degree of stenosis in the carotid artery is a 
significant factor that influences clinical decisions regarding 
surgical treatments, such as stenting or endarterectomies. 
Digital subtraction angiography (DSA) is regarded as the 
gold standard for diagnosing carotid stenosis severity, and 
which is a slight risk factor contributes to neurological 
deficits such as ischemic stroke. Computed tomography 
angiography (CTA) is the most accurate noninvasive 
imaging technique for evaluating carotid stenosis, with 
color Doppler ultrasonography and magnetic resonance 
angiography (MRA) being less accurate (3). However, 
the first step towards quantitatively assessing stenoses 
post-imaging is to perform segmentation of the carotid 
bifurcation and exclude the plaques. This task is difficult, 
even for experienced radiologists, and there is high 
interobserver and intraobserver variability in segmentations 
(4,5). Automatic and accurate methods of carotid bifurcation 
segmentation are therefore urgently needed to better 
quantify carotid stenoses.

The first step of traditional carotid vessel segmentation 
methods is to extract centerlines through the vessels. 
According to a review of vascular lumen segmentation in 
MRA and CTA images (6), graph cuts, level sets, and active 
shape models are three basic methods frequently used to 
extract vessels. Most traditional segmentation techniques 
are semiautomatic, such as those used by Tang et al. and 
Hemmati et al. (7-9). These are semiautomatic because in 
the initialization stage they use three seed points located 
in the CCA, ICA, and ECA that are previously selected 
by human experts. Cuisenaire et al. (10) developed a novel 
initial centerline extraction technique to eliminate reliance 
on manual seed points. A patient-adapted anatomical 
model was used to initialize and constrain the algorithm to 
produce centerlines (10); however, the model failed in cases 
where vessels were fully occluded, reflecting severe stenoses 
that required additional attention. This model therefore 
lacked the robustness required for carotid segmentation. 
Bozkurt et al. (11) proposed region-growing and random 
walk algorithms that segment the bone region first and then 
the vessel once the bone is removed, as bone can be easily 
confused with the target object. Similarly, Wu et al. (12)  
addressed the confusion between bone tissue and blood 
vessels by removing bone structures prior to studying the 
segmentation of head and neck vessels in CTA images. 
This approach is fully automatic, because seeds are selected 

from experimentally determined intervals according to the 
local histogram, and good agreement with expert manual 
measurements was achieved. Additionally, Tavares et al.  
(13-19) proposed a series of novel methods related to 
automatic artery segmentation, the classification of calcified 
regions, and hemodynamics in multi-modality medical 
images.

In recent years, the deep neural network (DNN) has 
shown the ability to learn a hierarchical representation of 
raw input data and has demonstrated excellent performance 
in image segmentation tasks (20-23). U-Net (24) is the most 
frequently used network applied in semantic segmentation 
of medical images and employs skip connections to 
combine high-resolution features and upsampled outputs, 
which yields good performance for two-dimensional (2D) 
images. However, it is difficult to build deeper networks 
that have high discriminative power for volumetric data 
due to the huge computational expense. Some researchers 
have attempted to extend 2D convolutional neural networks 
(CNNs) to volumetric applications using adjacent slices (25), 
orthogonal planes (26,27), and multiview planes (28) to 
capture the 3D contextual information of images. However, 
the 3D features that represent images in these models have 
not been explored in depth. Some studies have used 3D 
CNNs and fed volumetric data directly into the networks 
to develop variants of the 3D version of U-Net (29-31). 
However, DNNs have rarely been adopted for carotid 
vessel lumen segmentation, especially in 3D CTA images. 
Zheng et al. (32) combined Harr wavelet features with 
deep learning image features to detect carotid bifurcation 
points in 3D head and neck CT images. Other studies 
(33-35) have focused on 2D carotid ultrasound images, 
using CNNs to segment the intima and adventitia of the 
arterial wall in order to assess the intima-media thickness 
(IMT). Possible reasons for the absence of deep learning 
for volumetric segmentation of carotid lumens include the 
unavailability of annotated data and the trade-off between 
the network receptive field and limited computing memory 
for 3D images. Furthermore, arteries are easily confused 
with nearby structures, such as veins and bone tissue, which 
increases segmentation difficulty.

In this study, we applied fully automatic semantic 
segmentation of the carotid bifurcation lumen in CTA 
images. Firstly, we used residual connections, dilated 
convolutions, and a deep supervision strategy, integrating 
these methods into a 3D variant of U-Net, called 
CarotidNet. Secondly, we provided a two-phase strategy to 
segment tiny target objects from large image volumes. This 
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two-phase strategy included an object localization stage and 
a precise segmentation stage. These two stages used the 
same network, and the second training stage was fine-tuned 
using the pretrained model from the first stage. Thirdly, we 
combined Dice loss and focal loss to address the extreme 
distribution imbalance between—as they are labelled in the 
annotations—background voxels and carotid lumen voxels.

The remainder of the paper is organized as follows. 
Section II describes the study materials and methods, 
including an introduction to the dataset, data preprocessing 
steps, two-phase strategy, proposed network architecture, 
and combined loss functions. We present and analyze the 
results in section III and discuss the study limitations and 
directions of future work in section IV. Finally, conclusions 
are drawn in section V.

Methods

In this section, we introduce our deep learning model for 
the segmentation of carotid bifurcations in head and neck 
CTA images. Our method relies on a two-stage cascade 
network where both stages have the same structure. The 
first network aims to extract the region of interest (ROI), 
namely, the bounding box of carotid bifurcation vessels, 

from the entire CTA volume. The second network focuses 
on the precise segmentation of the obtained ROI.

Dataset

The Medical Image Computing and Computer Assisted 
Intervention (MICCAI) 2009 Workshop on Carotid Lumen 
Segmentation and the Stenosis Grading Challenge (2) 
provide a publicly available source of 56 head and neck 
CTA images, of which 15 are training images and 41 are 
testing images with actual annotations that are not publicly 
available. These images show varying degrees of stenosis 
and were acquired from three medical centers. Due to 
diverse scanners, image resolutions, and size characteristics, 
the in-plane pixel size ranges from 0.23 to 0.547 mm, the 
slice thickness is either 1 or 0.9 mm, the z-spacing ranges 
from 0.45 to 0.6 mm, and the number of slices ranges from 
395 to 827.

There are two carotid bifurcations in each image, but 
each volume annotation from the dataset is only applicable 
to one side (Figure 1A,B). The annotated region covers  
20 mm below the CCA bifurcation slice, 40 mm above the 
ICA bifurcation slice, and between 10 and 20 mm above 
the ECA bifurcation slice (Figure 1C,D). Figure 2 shows 

Figure 1 (A) Physiological structure of the carotid artery with blue dotted lines marking the ROI defined in the MICCAI 2009 Challenge. (B) 
is an example of a bifurcation slice, while (C) and (D) are example slices that include the CCA, ICA, and ECA. ROI, region of interest; CCA, 
common carotid artery; ECA, external carotid artery; ICA, internal carotid artery.
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a case of original CTA images with annotations from the 
training set.

Preprocessing

It is not possible to use an entire fine-resolution image 
for segmentation due to the large data volume; there is a 
trade-off between computational memory and resolution 
loss during resampling. We therefore used a two-stage 
resampling strategy where both stages are resampled 
from the original images. In the first stage, we resampled 
them to a size of 256×256×160 and a spacing of 1.2 mm 
× 1.2 mm × 2.4 mm. In the second stage, the resampling 
size was 512×512×640, and the spacing was 0.6 mm in 
each dimension. The emphasis of the first stage was to 
localize the carotid artery; therefore, resolution loss was 
acceptable in this step. The second stage focused on precise 
segmentation of the region identified in the first stage 
from the original images, so the processing resolution 
was relatively high. In the resampled image with a size of 

256×256×160 in the first stage, the center size of 128×128 
in the x-y in-plane region was enough to cover the scope 
of the carotid bifurcation. Moreover, because the ground-
truth annotation was applicable for either side, we further 
reduced the first stage volume to the left or right 5/8 of the 
center region, giving a size of 80×128×160. The reason we 
did not reduce the images to half the original size was to 
include some cases with minor shifts.

In the intensity normalization step, we first applied Otsu 
thresholding to each image to obtain a mask excluding 
spaces filled with air. Each volume was subsequently 
subtracted from the mean and divided by the standard 
deviation in the context of the mask. Finally, the image 
intensity was clipped to the range [−5, 5] and then rescaled 
to [0, 1].

Network architecture

Standard U-Net architecture is composed of the contraction 
path and the expansion path. In the contraction path, the 

Figure 2 A case of original CTA images from the training set with annotations shown in red. (A) is a 3D visualization of the expected artery 
lumens annotation around the carotid bifurcation (only the ROI is drawn here for presentation), while (B), (C), and (D) are selected slices of 
the original CTA images in the axial, sagittal, and coronal planes with corresponding labeled foreground voxels marked in red. ROI, region 
of interest; CTA, computed tomography angiography.
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feature channels double progressively as the size is halved 
four times by max pooling. In the expansion path, the 
feature channels halve progressively as the size is doubled 
until the original size is restored. The skip connections of 
the corresponding levels of features combine the location 
details of the former image and the semantic discriminative 
information of the latter image to perform semantic 
segmentation with high location accuracy. The skip 
connections also allow errors to easily propagate into the 
contraction path layers and facilitate the training process.

A deep network architecture with many parameters 
theoretically has greater discriminative power than a basic 
architecture (36), but may experience the vanishing gradient 
problem during the training process (37). To address this, 
He et al. (37) proposed a network stacked with residual 
units where the identity mappings (38) share similar skip 
connections to enable rapid error propagation. A deep 
supervision strategy that uses auxiliary supervision in 
intermediate layers (39,40) was also suggested to simplify 
training and potentially improve performance. When 
the network extends from 2D to 3D, the model can 
leverage the interslice context of CTA images and make 
better predictions for a volumetric patch of a scan (41). 

However, maintaining a proper field-of-view and deeper 
network in 3D would result in rapid growth in demand for 
computational resources, especially GPU memory. The cost 
of training would therefore greatly increase (42). However, 
we employed residual connections along with a deep 
supervision strategy in our network structure to facilitate 
the preservation of the gradient norm, which resulted in 
stable back-propagation (43).

Dilated convolution can expand the receptive field without 
losing resolution or coverage in dense prediction (44).  
Influenced by the notion of hybrid dilated convolution 
proposed by Wang et al. (45), which extracts multiscale 
features and avoids the gridding effect (46), we replaced 
the convolutions at the transitions between the contraction 
and expansion paths with cascaded dilated convolutions 
to capture a larger context, especially in 3D backgrounds 
(Figure 3).

Residual connections, deep supervision, and dilated 
convolutions are three recent advances in deep learning, and 
CarotidNet leverages their corresponding strengths based 
on U-Net. The convolution layers all have strides of 1×1×1, 
dilation rates of 1×1×1, and padding to maintain their original 
sizes. Given the relevant memory and volume limitations, 
our batch size was either 1 or 2, so we replaced batch 
normalization with instance normalization. Each convolutional 
block contained a 3D convolution layer with a kernel size 
of 3×3×3, followed by an instance normalization layer and 
subsequent leaky-ReLU nonlinearity. We adopted pre-
activation residual connections between convolution blocks in 
the contraction path to avoid performance degradation in the 
DNN. These pre-activation residual connections are called 
residual convolution modules (the blue arrow in Figure 4). 
We used a spatial dropout layer between convolution blocks 
to mitigate overfitting, and we used convolution blocks with 
a stride of 2×2×2 (the red arrow in Figure 4) to connect the 
residual convolution module for downsampling and to double 
the number of feature maps. To further enlarge the network 
receptive field, cascaded dilated convolutions with dilation 
rates of 1, 2, and 5 were used in the deepest layer of the 
contraction path. These were called the dilated convolution 
modules (the yellow arrow in Figure 4).

In the expansion path, the upscaled module (the white 
arrow in Figure 4) contained an upsampled 3D layer (kernel 
=2×2×2; stride =2×2×2) and a convolution block that halved 
the feature channels. We then concatenated the features 
with those of the corresponding levels in the contraction 
path and applied a normal convolution module (the black 

Figure 3 Details of the residual convolution module (A) and 
dilated convolution module (B).
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arrow in Figure 4) consisting of two cascade convolution 
blocks. To mitigate gradient explosions and vanishing 
issues, and to facilitate faster convergence, we employed 
a deep supervision strategy (47) in the expansion path by 
integrating the outputs at different levels of this path that 
were produced by a convolutional layer (kernel =1×1×1) 
and a subsequent upsampling layer (kernel =2×2×2; stride 
=2×2×2). As shown in Figure 4, we combined the deep 
blocks with shallow blocks using sequential summation. 
Finally, we applied sigmoid nonlinearity to perform 
probabilistic segmentation with values ranging from 0 to 1.

Training and testing scheme

As the volumetric data set is too large to feed into the 
network, even if there is only one whole volume in a batch, 
some studies (48-50) have used patch-based methods to 
address this issue. These methods extract small regions 
called patches from an image to be used as inputs for both 
training and testing. However, in our study, the carotid 
bifurcation lumen accounted for a small percentage of the 
whole image. With respect to these patch-based methods, 
a large quantity of patches will only have negative labels if 

they are randomly selected. Additionally, datasets tend to 
be further imbalanced due to patch overlaps. We therefore 
divided the task into two phases: the localization phase and 
the segmentation phase.

As the proportion of positive labels in training data 
during the segmentation phase was higher than that during 
the localization phase, we first trained the segmentation 
phase network. The training data volumes were regions 
144×144×144 in size at the center of the annotation 
bounding box that was extracted during the second stage, 
as noted above in the preprocessing section, resulting in a 
trained segmentation model. We then trained the network 
for the localization phase by feeding in 80×128×160 size 
volumes from the first stage and adjusting the weights 
initialized from training results in the segmentation phase, 
which produced a trained localization model.

During the testing phase, we first passed the 80×128×160 
size volume with 1.2 mm × 1.2 mm × 2.4 mm spacing to 
the localization model and extracted the carotid location. 
Based on the carotid location, we further extracted 
144×144×144 size volumes according to the center of the 
carotid bounding box and fed the extracted volumes into 
the segmentation model.

Figure 4 Network architecture of CarotidNet. The green dotted area indicates the deep supervision strategy.
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Loss function

Like most biomedical segmentation datasets, our dataset 
suffered from a dominant distribution of negative labels, 
which may have caused the segmentation network to be 
biased towards the background. To better understand the 
imbalance between positive and negative labels, for every 
volume in the training set, we calculated the proportion of 
voxels that were labeled as positive and negative by experts. 
Table 1 displays these statistics. Note that the samples 
calculated in resampled space A were 80×128×160 size 
volumes extracted from the first stage, and the samples 
calculated in resampled space B were 144×144×144 size 
volumes extracted from the second stage.

Table 1 shows how the training set used during the 
localization phase was more imbalanced than that used in 
the segmentation phase. This explains why we trained the 
segmentation phase network first. To alleviate the negative 
impact of class imbalance during the training process, we 
combined Dice loss (29) and focal loss (51), because Dice 
loss attaches more importance to overlapping parts of the 
predicted and annotated volumes while focal loss focuses on 
misclassified examples. The Dice loss derived from the Dice 
similarity coefficient (DSC) is defined as follows:

2 2
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where ip P∈  is the predicted soft segmentation volume, 

ig G∈  is the ground-truth binary segmentation volume, i is 
the index of voxels, and N is the number of voxels.

The focal loss, which decreases the contribution of well-
classified examples to the objective function, is defined as 
follows:
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We set α and γ as 0.25 and 2, respectively, as recommended 
in experiments by Lin et al. (51). The total loss, L, in our 
method was the summation of Dice loss and adjusted focal 
loss as follows:

*dice focalL L Lθ= +
 

[6]

where θ [0,1]∈  is the ratio of focal loss. To determine a 
proper θ value, we explored the segmentation performance 
of the network when θ was set to 0, 0.25, 0.5, 0.75, and 1.

Implementation details

This method was implemented in Python using Keras (52) 
with a TensorFlow (53) backend. There were 8,269,579 
parameters in the overall network. We adopted the Adam 
optimizer with an initial learning rate of 1e–4 during the 
segmentation phase and 5e–5 during the localization phase.

Because there were only 15 volumes in the training set, 
it was essential to augment the original training dataset 
to improve robustness and prediction accuracy. To reduce 
excessive storage requirements, we augmented data on the 
fly. We performed a random combination of augmentation 
operations on images before generating training batches to 
feed into the network, including translation in the range of 
[−15, 15] voxels, rotation with angles in the range of [−15, 
15] degrees, flipping along the x-axis, and resizing in the 
range of [0.8, 1, 2].

We randomly selected three volumes from the training 
set each from three distinct medical centers as a validation 
set and adopted an early stopping strategy with a patience 
of 50 for training purposes. For postprocessing, we first 
binarized the final probabilistic heat map with a threshold 

Table 1 Ratio between foreground and background voxels for different spaces in the training set

Ratio (10-4) Original space
Resampled space A  

(1.2 mm × 1.2 mm × 2.4 mm)
Resampled space B  

(1.2 mm × 1.2 mm × 2.4 mm)

Mean 2.76 4.01 33.95

Max 4.81 6.15 53.30

Min 0.49 1.62 14.80
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selected according to the validation set. We then optimized 
the results by performing connected component analyses on 
the binarized images to remove some isolated false-positive 
regions and to obtain the target object segmentation 
results. Finally, we resampled the segmented images to each 
original space to compare them with the gold standard of 
the MICCAI challenge 2009.

Results

Evaluation metrics

We used the DSC as the main metric to evaluate the 
performance of our carotid bifurcation segmentation 
method. DSC is defined as follows:

22
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where ip P∈  is the predicted soft segmentation volume, 

ig G∈  is the ground-truth binary segmentation volume, i is 
the index of voxels, and N is the number of voxels.

DSC focuses on the overlap of two volumes to assess the 
corresponding geometric surface distance. The mean surface 
distance (MSD) and Hausdorff surface distance (HSD) (2) 
are also included in the evaluation metrics. All three metrics 
were computed by the MICCAI challenge 2009 website’s 
internal algorithm from the binary segmentation results we 
submitted.

Ratios of focal loss in the total loss function

Although the MICCAI 2009 Challenge was finished at the 
time the current study was being conducted, registered 
users could still submit segmentation results to the MICCAI 
website (54) and contact the organizers to audit these 
uploaded results. The organizers then made the evaluation 
metrics available to the registered user. However, to obtain 
testing results every time they were required, permission 
was needed from the organizers to view the evaluation 
metrics on the website, which would make it an off-line 
process. We therefore reproduced the segmentation output 
of the test set used by Tang et al. in a previous work (7)  
of published results of the challenge, and used this data to 
establish the auxiliary labels as an auxiliary standard. We 
then calculated the evaluation metrics to determine the 
proper ratio of focal loss in the total loss function.

For the test set, the average DSC of the auxiliary labels 

compared with the gold standard was 90.2%, which indicates 
the auxiliary labels achieved good agreement with the gold 
standard. Figure 5 and Table 2 show the average DSCs of the 
network prediction results for different θ selections compared 
with the auxiliary labels (i.e., the auxiliary standard).

In cases where the ratio of Dice loss and focal loss 
in the loss function was 2:1, or θ=0.5, the segmentation 
performance for the test set was best when the average 
DSC, compared with the auxiliary standard, was 80.34%. 
Therefore, 0.5 was chosen as the best ratio of focal loss to 
Dice loss in the total objective function. In the following 
section, hybrid loss is referred to as the combined objective 
function of Dice loss and focal loss with θ set as 0.5.

Comparison with the original 3D U-Net and weighted 
cross-entropy loss

We also trained the CarotidNet with weighted binary cross-
entropy loss and extended the original U-Net to 3D with 
weighted binary cross-entropy. We then compared these 
results with that of CarotidNet trained with hybrid loss. 
In the weighted binary cross-entropy function, we set the 
positive weight as the ratio between negative voxels and 
positive voxels calculated with the training set. To illustrate 
the effect of the designed network structure and loss 
function, we compared the segmentation performance of the 
three models discussed above. The DSC, MSD, and HSD 
were three measures used to evaluate the performance of 
the segmentation methods; the results are shown in Table 3  
and Figure 6.

Visualization of the test set

Figure 7 visualizes the 3D reconstructed images of four 
segmentation results generated by CarotidNet with hybrid 
loss for four different cases from the test set. The first row 
in the figure depicts the case with the best performance for 
the proposed method; the other three cases showed worse 
performance. The best case had the highest performance 
across all three measures among the test sets. One or two 
measures of the proposed method in the other three cases 
ranked last of all the measures among test methods. The 
columns from left to right show the direct prediction 
probability maps of the network: the red dotted lines 
indicate false-positive areas, and the green ellipses denote 
false-negative voxels, the segmentation results after 
postprocessing, and segmentations of the auxiliary labels. 
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Note that the false-positive and false-negative voxels here 
were determined based on the auxiliary labels, as the actual 
annotations were not available to the public. Mismatches 
may therefore occur, particularly in the third row where 
the auxiliary labels achieved a 71.4% DSC compared 
with the gold standard, which was the worst performance 
observed. The poor performance evident in the second and 
fourth rows were primarily due to false-negative voxels, 
particularly those in lumens with high curvature. Figure 8 
shows the corresponding 2D slices.

Leave-one-out cross-validation

As there were only 15 cases in our training dataset and 
41 cases in the testing dataset, it was unclear to what 
degree the segmentation performance was restricted by 
the training dataset’s limited size. To reduce the impact 
of the small training dataset size on model performance, 
we used the segmentations reproduced from the auxiliary 
labels (7) based on the test set together with the training 
set to perform leave-one-out cross-validation. Using this 
approach, the training dataset was enlarged to 55 and the 
testing dataset was reduced to 1 with every validation. The 
results are presented in Table 4. The average DSC increased 
from 82.26% to 86.45%, and the average MSD and HSD 
decreased significantly.

Impacts of preprocessing and postprocessing

Due to the variety of scanning parameters for CTA images, 
we needed to resample the images to achieve uniform 
spacing for the training process. When we submitted 

Figure 5 Boxplots of the DSC (A), MSD (B), and HSD (C) 
calculated from segmentation of the test set trained using total 
objective functions with various ratios of focal loss. DSC, Dice 
similarity coefficient; MSD, mean surface distance; HSD, 
Hausdorff surface distance.
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Table 2 DSCs, MSDs, and HSDs of the test set under various ratios 
of focal loss compared with the auxiliary standard in resampled 
space B where the value with * represents the best performance and 
determines which θ to select

θ DSC (%) MSD (mm) HSD (mm)

0 75.34±10.03 2.36±3.07 12.22±5.84

0.25 76.21±9.93 1.99±1.40 11.63±5.26

0.50* 80.34±7.94* 1.63±1.38 11.44±6.20*

0.75 75.52±10.20 2.19±1.77 12.97±6.31

1 65.11±12.76 3.04±1.42 13.03±3.90

DSC, Dice similarity coefficient; MSD, mean surface distance; 
HSD, Hausdorff surface distance.
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the test set results to the MICCAI website, however, 
the segmented outputs had to have the same spacing as 
the corresponding original images. In other words, we 
resampled twice in the overall process. To evaluate the error 
associated with resampling, we resampled the resampled 
ground-truth annotations with a spacing of 0.6 mm × 
0.6 mm × 0.6 mm to the original spacing and evaluated 

the results based on three measures compared with the 
gold standard. This process was only performed for the 
training set, because the gold standard of the test set was 
unknown. The evaluation metrics are shown in Table 5. 
Note that Observers A, B, and C are human experts. The 
gold standard was generated using the average of their 
annotations.

Table 3 Performance comparison of deep learning models and the gold standard 

Methods DSC (%) MSD (mm) HSD (mm)

CarotidNet + hybrid loss 82.26±5.77 0.68±0.55 7.54±4.75

CarotidNet + weighted BCE 63.02±15.53 1.94±0.91 13.16±2.76

U-Net + weighted BCE 58.79±17.91 2.10±0.95 13.65±2.78

DSC, Dice similarity coefficient; MSD, mean surface distance; HSD, Hausdorff surface distance.

Figure 6 Boxplots of the DSC (A), MSD (B), and HSD (C) calculated from segmentation of the test set trained using various network 
frameworks. DSC, Dice similarity coefficient; MSD, mean surface distance; HSD, Hausdorff surface distance.
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For the training set, resampling the results twice 
creates an approximately 6.9% error in the DSC, which 
theoretically suggests that the maximum DSC of the 
proposed method can only reach approximately 93.1%. 
The third row of Figure 7 indicates that there are possible 
side branches in our predictions. However, our method 
primarily focuses on the application of deep learning, 
not removing side branches in postprocessing. Our 
postprocessing stage primarily involved binarization, and 
the connected component analysis mainly used intensity 
information from the probability maps. In traditional 
image processing methods (55,56), centerlines and shape 

information are usually used to remove outliers. Given these 
two approaches, an 82.3% DSC demonstrated that the 
performance of the proposed method was highly consistent 
with the gold standard.

The binarization scheme is rigid in postprocessing 
because the threshold is the same for each voxel in each 
volume. To address this, Wang et al. (57) proposed a 
threshold map and direct introduction of the error 
associated with the threshold in the objective function so 
that the network can learn a probability heat map and a 
corresponding threshold map simultaneously. In other 
words, the thresholds were different for each voxel in each 

Figure 7 3D visualization of the segmentation results. The columns from left to right are the network’s direct prediction probability 
maps. The red dotted lines indicate false-positive areas, and the green ellipses denote false-negative voxels, the segmentation results after 
post-processing, and segmentations of the auxiliary standard. Each row represents the segmentations of a CTA image. CTA, computed 
tomography angiography.
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image, and therefore the binarization scheme was flexible 
and locally related.

Comparison with other fully automatic methods

To the best of our knowledge, only three fully automatic 
carotid segmentation methods currently exist, including 
ours. Although the first fully automatic method (10) 
reached a DSC of 89.6%, it failed to segment the carotid 
bifurcation vessels in 8 out of 41 test cases. Also, the failed 
cases were not considered when calculating the evaluation 
metrics. This failure was primarily caused by the nonrobust 
mechanism the method used to generate initial seed points. 
Bozkurt et al. (11) used traditional random walk and region-

growing algorithms and eventually obtained DSCs of 
approximately 90.2%. To the best of our knowledge, our 
method is the first time a DNN was applied to segment 
carotid bifurcation lumens in 3D CTA images. As noted 
above, a large portion of the error in our method can be 
attributed to resampling, where we needed to upsample 
test images again and upload them to obtain the evaluation 
metrics from the MICCAI 2009 Challenge website. This 
issue might have been avoided in part if we had had the 
labeled test set for evaluation. If required, the segmentation 
results of this study can be used to initialize other 
semiautomatic traditional image segmentation methods in 
order to further improve upon segmentation without the 
need for seed points.

Discussion

Limitations and future work

Compared with more traditional approaches, deep learning-
based approaches have their advantages and disadvantages. 
In general, deep learning-based approaches require less 
expert analysis and fine-tuning. They also provide superior 
flexibility, as the models can be customized by retraining 
with further data. However, sometimes traditional 
approaches can efficiently solve problems using less code 
and at a lower cost (58). Deep learning introduced the 
concept of end-to-end learning in image segmentation (59) 
where networks are fed with annotated data and underlying 
patterns are discovered. However, this requires extensive 
training data, or else overfitting may occur. Additionally, it 
is difficult to tune the network due to the large number of 
parameters and their complex interrelationships (60). In this 
study, due to the nature of deep learning, we encountered 
these limitations as described below.

Because the target object position conforms to relevant 
physiological structural characteristics, our two-stage 
strategy can effectively perform segmentation tasks. 
However, for segmentation tasks involving target objects 
that lack regular locations, our proposed strategy may 
amplify errors. Notably, if the location obtained during the 

Figure 8 2D visualization of test cases. Each row represents a case 
from the same source as the corresponding row in Figure 7. The 
columns from left to right are slices taken from CTA images based 
on axial, sagittal, and coronal planes with the segmentation results 
labeled in green and the auxiliary standard in pink. CTA, computed 
tomography angiography.

Table 4 Performance comparison with leave-one-out cross-validation 

Training cases DSC (%) MSD (mm) HSD (mm)

15 82.26±5.77 0.68±0.55 7.54±4.75

55 86.45±4.37 0.40±0.28 4.56±4.27

DSC, Dice similarity coefficient; MSD, mean surface distance; HSD, Hausdorff surface distance.
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target localization phase is incorrect, this will cause poor 
precision in the segmentation phase. However, if a single 
image in the dataset takes up minimal space and the whole 
volume can be fed into the network with one pass, training 
and testing can be combined in a single-stage, precise 
segmentation phase.

Using deep learning techniques to produce exceptional 
results relies heavily on access to vast quantities of 
training data. Although access to only limited amounts of 
annotated data is a common problem in biomedical image 
segmentation, the proportion of training sets to test sets 
used in our study was greatly skewed towards test sets; this 
is the opposite of what occurs in most cases. To further 
increase the limited size of training datasets and improve 
segmentation quality, real clinical images must be collected 
and used with emerging data amplification techniques, such 
as generative adversarial networks (GANs) (61).

Accurate stenosis analysis requires precise segmentation 
of vessel lumens with particularly high local accuracy at the 
boundaries. There has been a recent trend of incorporating 
Markov random fields (MRFs) (62,63) and conditional 
random fields (CRFs) (64-66) directly into networks to 
refine the boundaries and to qualitatively and quantitatively 
improve localization accuracy. We intend to adopt such a 
mechanism in our future work.

Conclusions

In this study, we focused on creating a fully automatic 
algorithm and proposed a CarotidNet architecture based 
on U-Net for 3D carotid bifurcation lumen segmentation 
using data from the MICCAI 2009 Challenge. The primary 
contributions of this paper are summarized as follows: 
(I) we incorporated the concept of deep supervision with 
the combined advantages of residual connections and 

dilated convolutions to propose a 3D variant structure 
based on the original U-Net; (II) we proposed a two-stage 
strategy that can segment tiny target objects from large 
backgrounds, including a localization phase for carotid 
detection and a segmentation phase for precise carotid 
lumen segmentation; and (III) we addressed the extreme 
imbalance between foreground and background in the 
dataset by designing a hybrid loss function consisting of 
Dice loss and focal loss.

In conclusion, we used deep learning to perform 
segmentation of carotid bifurcations in 3D CTA images. 
Although the training set to test set ratio was 15:41, we 
achieved an average DSC of 82.3% by comparing the test 
set with the gold standard. Our results indicate that deep 
learning is a promising approach to extract carotid bifurcation 
artery lumens from CTA images, although there is still room 
for improvement in the fully automatic segmentation process. 
This depends on more annotations becoming available and 
a proper mechanism being adopted to refine the boundaries, 
which would enable more accurate stenosis evaluation to 
support clinicians in their decision-making.
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Table 5 Resampling error evaluation based on the training set (other results were based on the overall dataset)

Measures DSC (%) MSD (mm) HSD (mm)

Gold standard 100.0 0.01 0.06

Observer A 95.1 0.10 0.65

Observer B 94.6 0.11 0.83

Observer C 94.4 0.12 0.97

Resampled to 0.6 mm3 and back 93.1 0.37 0.60

DSC, Dice similarity coefficient; MSD, mean surface distance; HSD, Hausdorff surface distance.
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