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Introduction

The human body has ever attracted different scientific 
areas in terms of finding methods of how to systematically 
and reproducibly analyze its constituents on a micro- and 
macroscopic level. Due to technical progress and new 
modalities, the concept of body composition profiling (BCP) 
has gained increasing interest in recent years and has thus 
experienced various ways of assessment and definition (1).  
BCP in its broadest sense describes the composition and 
distribution of the large compartments in the human 
body—muscles, adipose tissue, parenchymal organs, 
bones and blood (2). Magnetic resonance imaging (MRI) 
with its optimal soft tissue resolution and inherently high 
contrast between fat and water is an ideal modality for the 
assessment of adipose tissues and muscle without the use 
of ionizing radiation. This review article intends to give an 
overview of BCP emphasizing qualitative and quantitative 
MR imaging concepts in the assessment of adipose and 

muscle tissues.

Methods for BCP

Dual-energy X-ray absorptiometry (DEXA) 

The interest in BCP has started a long time before the 
invention of MR and imaging in general, an exemplary 
development was the invention of the body mass index 
(BMI) in the nineteenth century. However, the need for 
measures of BCP beyond BMI was early noticed among 
the radiologic community, and CT-derived volume 
estimations have been first described as early as in 1984 (3). 
Dual-energy X-ray absorptiometry (DEXA) is a modality 
well known for its usability in the setting of osteoporosis 
quantification. However, DEXA proved comparably well 
for volume assessment of different body compartments by 
using only a very limited amount of radiation (0.5 µSv) (4).  
To date, DEXA is the most popular imaging technique 
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used for BCP. While it can be performed regionally or as a 
whole-body examination, its current use in musculoskeletal 
metabolic and geriatric settings is most often focused on 
the analysis of the appendicular skeletal muscle mass (5). 
However, DEXA is prone to a series of variations and 
errors, that may arise from the scanner itself as well as 
from the subject examined (6). The accuracy of DEXA 
measurements may have been overestimated for a long time 
(7,8) and the modality’s accuracy depends largely from the 
system used as well as from the population examined (6,9). 
To show equivalence to muscle and fat remains difficult (7) 
and bases on a model with assuming constant fat-free mass 
hydration of 73%, which can in fact range from 67% to 
85% (10). As a consequence, repetitive scans of the same 
person at different states of hydration cause significant 
differences in classical DEXA measures (11).

Computed tomography (CT)

CT allows for the attenuation-based depiction of body 
compartments with high resolution. Besides, it facilitates 
the segmentation of muscle cross-sectional areas per slice as 
well as for 3D volume segmentation, e.g., calculation of total 
muscle mass. As attenuation data are scaled in relation to 
water (HU 0) and thus comparable among different scanners, 
a threshold-based approach is applied, typically at a range of 
around −30 to 150 Hounsfield Units (HU) as segmentation 
mask (12,13). Unlike DEXA, muscle segmentation also 
allows for macroscopic morphologic assessment of muscle 
quality. Within the segmented muscle cross-sectional areas, 
myosteatosis is identified by streaks of negative HU values 
and fatty infiltration lowers muscle attenuation as fat voxels 
by definition have negative HU values (13). However, muscle 
and fat volume segmentation is time-consuming, which is 
why CT currently focusses on muscle quantity assessment 
extrapolated from a single slice, most commonly at the 

level of the third or fourth lumbar vertebra (13). There is 
large-scale research that has recently been investigating the 
automation of muscle areas in CT, enhancing its diagnostic 
yield in terms of whole-body muscle volume assessment. As 
for other radiological demands, automation enhanced by 
artificial intelligence algorithms has already demonstrated the 
potential for muscle mass segmentation (14). However, the 
use of CT for this task is naturally associated with substantial 
radiation dose and therefore usually limited to a specific 
population and indication, limiting its role for longitudinal 
observations (5,15). 

MRI

Parallel to advantages in the application of CT for BCP 
tasks, MRI has gained comparable importance in the 
assessment of body compartments, muscle mass, and 
associated anthropometric measures. The technique is free 
of ionizing radiation and therefore allows repetitive scans in 
specific longitudinal observations. Furthermore, free from 
several technical biases or errors in DEXA and CT, MRI 
has been validated to reliably measure body compartments 
(16,17), and to perform this task at high accuracy, given a 
range of quantitative error of 1.1% to 4.4% (18). This error 
may also depend on basic acquisition parameters, such as 
the use of surface or body coils or other protocol decisions 
(e.g., continuous moving table acquisition; see Table 1 for 
exemplary protocol) with implications on signal-to-noise 
ratio and acquisition time. This must be considered and 
handled individually, as an error of a few percent may be 
negligible for certain populations and indications while 
playing a significant role in e.g., monitoring examinations 
of athletes. In any case, despite its validity and reliability, 
MRI currently faces difficulties in availability and ease of use 
in terms of data assessment. The big advantage of muscle 
assessment by MRI, namely acquisition of whole-body data, 

Table 1 Exemplary whole-body MRI protocol for sarcopenia assessment (partially adopted from Morone et al. 2017)

Sequence
Acquisition 
direction

Field of view
Slice 
thickness

Examination 
region

Target acquisition 
time

Specials

3D or 2D T1-weighted 
gradient-echo Dixon 
(two-point)

Axial (or 
coronal 
acquisition)

Largest available (usually 
<50 cm × 50 cm)

5–7 mm Whole-body ~10 min No coil needed. 
Recommended use of 
breath-hold sequences 

T1-weighted multi-echo 
Dixon

Axial Adapted to thigh size 
(both sides)

2–3 mm Mid-thigh 
(10–20 slices)

~2 min Multi-channel body coil. 
T2* corrected multi-echo 
images may improve 
accuracy (19)
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Figure 1 Multiplanar coronal reconstructions of composed (A) fat- and (B) water-only images, as derived from scanner, from an axially 
acquired T1-weighted whole-body MRI gradient echo sequence using two-point Dixon technique. The images are from a clinically 
indicated examination of a 34-year-old female patient with mild overweight. The images were post-hoc labor-intensively segmented 
manually, as shown in the (C) color-coded segmentation image.

demands technically difficult and still time-consuming post-
processing. Manual segmentation, as shown in Figure 1 takes 
several hours (depending on the volume, accuracy, and detail 
of segmentation) but is currently not ready-for-use in clinical 
practice. Numerous automated methods intend to ease 
whole-body segmentation (20-22), but except for very limited 
proprietary examples, the majority of BCP assessment by 
whole-body MRI is currently performed in research settings 
employing artificial intelligence for advanced segmentation 
tasks with promising results (Figure 2). 

Standard Spin-Echo MR imaging

The different MR behavior of macroscopic and cellular 
fat and water has been extensively described since the 
very beginnings of animal and clinical MR research (23). 
Obvious differences in T1- and T2 relaxation times 
paved the way for qualitative interpretations of fat and 
water components in tissue and organs in current clinical 
MR imaging. In acute reactions, muscle tissue usually 
experiences edematous changes associated with an increase 
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Test image GT label Pred label

Dice coefficients
Subcutaneous adipose tissue: 0.90±0.04, Visceral adipose tissue: 0.74±0.11

Figure 2 Exemplary slices of a segmented whole-body MRI of a healthy 50-year-old female, acquired as axial T1-weighted gradient-echo 
Dixon sequence. The first column shows the original slices, second and third columns are color-labeled maps of the segmentation masks. 
Adipose tissue was segmented in an experimental approach, differentiating between subcutaneous fat (green) and visceral adipose tissue 
(yellow). The second and third columns from the left represent manual ground truth (GT) and predicted automatic (Pred) label mask. The 
comparability was excellent between GT and Pred label using Dice coefficient, however, the agreement was better for subcutaneous fat 
(0.90±0.04), compared to visceral fat (0.74±0.11).

in water and volume, followed by a decrease in water with 
atrophy and fatty infiltration in chronic changes. While 
edema can be depicted on fluid sensitive T2-weighted 
usually fat-saturated sequences, muscle volume and fatty 
infiltration can be best seen on non-fat saturated T1 or 
T2-weighted sequences. Goutallier et al. were the first to 
describe fatty infiltration grades of the shoulder rotator cuff 
muscles on a five-point scale, depending on the amount of 
visually perceivable intramuscular fat on CT images (24). 
This simple and straight forward concept has been adopted 
also in MR imaging of the shoulder and different other 
regions of the body (25,26). Some studies have however 
also investigated semi-quantitative methods to quantify 
muscle atrophy and fat infiltration (26,27). According to 
Davis et al., mere cross-sectional muscle area measurements 
are more reproducible than semi-quantitative grading 
with Goutallier classification (28). Advanced quantitative 
segmentation algorithms in 2D or 3D are able to determine 
fat content and percentage of a muscle area or volume (29).

In addition to muscular volume and fat content 

assessment, MRI theoretically enables statements about 
muscle quality regarding muscle fiber type composition 
based on differences in relaxation times. The relative 
composition of muscular fiber types I and II, also known 
as slow- and fast-twitch fibers, determines the functional 
profile of a muscle and impacts on relaxation behavior. 
This was until recently only investigated by dissection. 
Already more than thirty years ago, MRI demonstrated to 
be excellent for the correlation with pathology in a small 
cohort (30). However, the underlying principles of tissue 
differences in T1 and T2 times have been thoroughly 
investigated throughout the last decades and were shown 
to be dependent on a wide spectrum of influencing 
factors. Especially edematous changes and sex/age-
related differences have a substantial impact on fiber type 
composition derived from MR relaxation times (31,32). In 
fact, the non-specificity of muscular T1 and T2 times limits 
the ability to reproducibly determine fiber type composition 
in clinical routine. More recent investigations have however 
presented encouraging approaches utilizing quantitative 
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methods of diffusion-weighted MR (q-space imaging) and 
were able to differentiate different muscles (by their fiber 
composition) in mice (33).

Chemical-shift MR imaging

The principle of chemical shift imaging is based on 
different precession frequencies of water and fat protons 
at a certain magnetic field strength. This allows acquiring 
in- and opposed-phase images where proton spin 
magnetization vectors at two different echo times (i.e., two-
point technique) are either in equal or opposed direction to 
each other. Respective signal intensities can then be used 
to additionally generate fat and water images (Figure 1),  
resulting in four different image contrasts in total. This 
principle was first described by Dixon in 1984 (34) and 
is nowadays widely used in clinical imaging. The Dixon 
technique due to its robustness, in general, does offer 
homogeneous fat-saturation over a large field of views, 
as well as fast MR imaging of large target volumes, e.g., 
whole-body (wb) MR imaging when used with gradient-
echo sequences (35-37). However, limitations have to be 
considered, as especially fast two-point Dixon sequences 
are prone to B0-magnetic field inhomogeneity (38). There 
are however different strategies in reducing this error. On 
one hand, multi-echo Dixon techniques compensate for 
these inhomogeneities, allowing to accurately quantify fat 
content in any image voxel through fat-fraction maps where 
the grey value of each pixel is proportional to its respective 
fat-percentage (39). This technique is most widely used 
for quantification of liver steatosis and has shown to be 
comparable to a histologic reference standard (40,41). The 
same technique has also been applied to muscle imaging and 
in a recent study fatty infiltration of rotator cuff muscles was 
quantified with isotropic fat-fraction maps from multi-echo 
3D-Dixon sequences and correlated with post-operative 
outcome measures (42), indicating the direction of advanced 
muscle quality assessment with quantitative MR imaging. 
On the other hand, certain methods for B0-magnetic field 
inhomogeneity reduction focus on the use of prospective 
and retrospective intensity inhomogeneity correction. 
Exemplarily, Andersson et al. proposed a self-calibrating 
correction method that allows for the processing of raw as 
well as normalized images with regard to B0 magnetic field 
inhomogeneities (43). 

In addition to the plain large-scale separation of 
mainly fat and water containing body compartments, 
precise assessment of intra- and intermuscular fat can be 

obtained with higher spatial resolution. Though sometimes 
misleadingly used synonymously, these two quantitative 
descriptors of adipose tissues are defined as presence of 
macroscopic fat within/between fibers of one muscle (i.e., 
real fatty muscle infiltration, also named “interstitial fat”) 
and of adipose tissue that accumulates between muscle 
groups underneath the deep fascia, respectively (44,45). 
While intramuscular fat is more difficult to image, these 
types of fat deposition are known to be associated differently 
with several physiologic and pathologic conditions. For 
example, intramuscular fat content is twice as high after 
spinal cord injury, compared to healthy controls (46). On 
the other hand, intermuscular fat is sometimes referred to 
as “bad” adipose tissue, as it correlates stronger with visceral 
adipose tissue and is hence linked to the metabolic disease 
spectrum, and furthermore serves as a good predictor 
of insulin sensitivity (47). Moreover, over the past two 
decades, different groups have demonstrated quantitative 
changes of intramuscular fat in diseases from the spectrum 
of neuromuscular disorders, most commonly muscular 
dystrophies (48). Dahlqvist et al., for example, proved that 
fat fraction derived by chemical shift imaging of paraspinal 
and other muscles in facioscapulohumeral dystrophy 
patients, correlated with clinical and genetic disease 
markers, even when symptoms did not (49). Another group 
used three-point Dixon for quantification of intramuscular 
fat fraction in Duchenne muscular dystrophy. The result 
was a stronger correlation with a validated disease severity 
score than any other tested clinical examinations, such as 
isokinetic dynamometry of the knee extensor strength (50).

Dixon technique cannot only generate fat- and water-
images but can also define precise quantitative water 
and fat fraction maps on a voxel basis. This represents a 
major benefit compared to CT (51,52) where a certain 
attenuation/HU value is attributed to each voxel based 
on the integral of the respective constituents. Hence, the 
potential fat contribution to a certain attenuation value of 
one single voxel cannot be clearly identified (53). As the 
presence of fat even in one small voxel is though known 
to improve specificity in lesion characterization (53), 
detection of intravoxel, and more specifically intracellular 
fat, is of utmost importance and used in several clinical 
scan protocols, e.g., for liver imaging (54,55), as well as in 
research settings (56,57).

Diffusion-weighted imaging and MR spectroscopy

Apart from chemical shift (Dixon-technique) imaging, 
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different groups have also assessed muscle quality 
utilizing diffusion-weighted and diffusion-tensor imaging 
(DTI) (58-60). In the example of rotator cuff muscles, 
quantitative fat fractions, as well as different DTI-
derived parameters, were shown to highly correlate 
with age-related alterations, which were undetectable 
by visual reading. The findings were also supported by 
naturally higher interreader agreements, compared to the 
readers’ rating according to the Goutallier classification  
system (61) .  Other groups were also able to show 
significant correlations between standard DTI measures 
and functional tests of muscle quality, such as Klupp et al. 
by comparing paraspinal muscular DTI parameters with 
measures from an isokinetic dynamometer (62). DTI may 
also help determine muscle integrity or recovery from 
bundle tears that can be nicely illustrated by additional 
tractography but until now DTI has not found its way 
to large scale applications in clinical routine and largely 
remains a research tool.

MR spectroscopy attempts to quantify tissue constituents 
on a molecular level, usually based on H1-proton 
signals. While there is a large body of literature about 
MR spectroscopy application in fat quantification and 
other tasks of liver imaging (63,64), the technique has 
also proven its usability in neuroradiologic as well as 
musculoskeletal settings. In musculoskeletal radiology, 
standard proton-based MR spectroscopy has mostly been 
used for the analysis of tumor lesions but also shows 
significant correlations with the metabolic status of 
muscular tissue (65). MR spectroscopy does not only allow 
to assess lactate concentration after muscle exertion (66) 
but can also accurately determine fat content in a certain 
volume of interest (VOI). However, this is associated with 
considerable sample error as a consequence of VOI position 
variance (67). Only small changes in the VOI position 
may have a huge impact on accurate fat quantification. 
The additionally rather long acquisition times and the 
need for a prospective acquisition, further prevent large 
scale use of this technique beyond scientific studies. While 
MR spectroscopy has existed even before clinical MR 
imaging and is still often considered as the gold standard 
of volumetric fat quantification (68,69), current clinical 
investigations predominantly focus on chemical shift 
imaging (70). Nonetheless, MR spectroscopy is still used 
frequently in research settings, also due to recent discoveries 
in the field of in-vivo muscle function assessment with 
31-P-spectroscopy (71,72). This has recently allowed for 
the accurate assessment of muscular metabolic changes in 

different diseases, revealing altered pH levels at rest and 
under exercise in nephropathic type 1 diabetes mellitus 
patients (73), or identifying three different disease phases in 
facioscapulohumeral dystrophy (74).

Texture analysis and advanced post-processing

Among musculoskeletal experts as well as in all other 
radiologic subspecialties advanced methods of image 
pattern analysis, termed texture analysis (TA) (75), have 
been investigated with significant implications on clinical 
outcome. Pattern recognition may help to find new 
biomarkers that better correlate with clinical outcomes 
compared to mere qualitative ratings, e.g., percentage 
gradings of fatty muscle infiltration (76,77). Moreover, 
isotropic MR sequences allow for the acquisition of detailed 
large volume datasets, e.g., of whole muscle groups or 
even whole-body MR data sets allowing for 3D volume 
assessment pattern recognition of fatty muscle infiltration, 
e.g., of the psoas muscle (78). TA may thus produce more 
reproducible and sophisticated biomarkers of muscle quality 
than mere qualitative ratings of radiologists.

Clinical applications of MRI for BCP: the present

The currently used concepts of BCP assessment differ 
by large regarding technical (i.e., imaging modality) and 
clinical conditions (i.e., heterogeneity of definition) and are 
therefore of limited comparability. Despite the trending 
character of whole-body imaging, it is currently believed 
that this is one of the main-restricting factors for further 
clinical applications in metabolic/geriatric settings as well as 
in oncologic disease monitoring (79).

Nonetheless, MRI may be a very promising BCP 
assessment method for the future. So far, there is exciting 
literature on the correlation of MR BCP data with clinical 
indications and their disease outcomes. Apart from using 
MR data for evaluation of normal healthy populations (80),  
athletes or elderly patients (81), it is also significantly 
associated with classic outcome parameters, e.g., mortality 
and common laboratory tests, e.g., tumor markers in 
oncologic (58,82) and metabolic (83-86) patients. In terms 
of drug-monitoring, studies have demonstrated both 
positive (87) and negative (88) drug effects on MR-derived 
BCP measures. Large-scale prospective biobank trials have 
furthermore had first achievements in phenotyping by 
imaging, e.g., by linking different BCP types with increased 
risk of type II diabetes or coronary heart disease (89).
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Sarcopenia

The most interesting application may however be in the 
field of sarcopenia. The term sarcopenia, originating from 
the Greek for “loss of flesh” (sarx penia) is a condition 
determined by the loss of muscle volume and force and 
is believed to correlate with higher mortality in geriatric 
patients among all disease-specific cohorts. Furthermore, 
sarcopenia seems to be linked to higher mortality, as 
discovered by an opportunistic screening study in a cross-
sectional elderly population (13,90).

This condition is defined by three diagnostic criteria: 
anatomic changes (as reduced calf circumference); loss in 
muscle quality; decrease physical strength (as reduced grip 
strength and/or walking speeds). According to recently 
revised guidelines published by the European Working 
Group on Sarcopenia in Older People (EWGSOP), 
sarcopenia in the elderly patient per definition is “probably” 
present when muscle strength is reduced, “confirmed” 
by a reduced muscle quality or quantity (depending on 
the modality in use, e.g., ASMM in MRI), and is believed 
to be “severe” when physical performance is in addition 
significantly reduced (91,92). The EWGSOP recommends 
MRI as one of the imaging modalities to evaluate the 
confirmation criteria, i.e. muscle quantity or quality. In 
the last version, the guidelines specifically recommend the 
utilization of MRI for measuring appendicular skeleton 
muscle mass, or its related index (ASMMI) for height-
adoption, which have been well investigated and extensively 
discussed in DEXA-related research for the past decades 
(5,7,93). Moreover, the prevalence of sarcopenia in obese 
populations has been investigated by Linge et al., and there’s 
data indicating that even more sophisticated correction 
for different body constitutions may be respected in future 
guidelines for criteria of sarcopenia assessment. In any case, 
MR-derived body markers such as muscle fat infiltration 
and fat-tissue free muscle volume have been shown to allow 
for a muscle-specific functional assessment (94).

The current EWGSOP consensus paper focuses on 
qualitative methods of MRI for muscle BCP profiling (91). 
Most importantly, intermuscular adipose tissue (Figure 3)—
often measured at mid-thigh level—is a parameter that has 
already been investigated extensively using threshold-based 
measurements in CT (95). When derived from MR images 
it has also been shown to correlate with mortality and other 
disease outcome measures (96) and may thus be the focus 
of further BCP studies. The fact that it is reliable in the 
assessment of sarcopenic muscles (97) and can be evaluated 

from a single slice (98,99) may prove beneficial for the 
use of BCP profiling and muscular assessment with MRI. 
Common qualitative and quantitative measures of BCP in 
WB-MRI are as follows:

(I)	 Fat-related volumes:
	Visceral adipose tissue volume (VAT);
	Subcutaneous adipose tissue (SCAT);
	Pericardial adipose tissue.

(II)	 Muscle-related volumes:
	Total muscle volume;
	Appendicular skeleton muscle mass (ASMMI).

(III)	 Muscle quality parameters:
	Intermuscular adipose tissue (IMAT) at mid-thigh 

level;
	Total cross-sectional area of visualized muscles at the 

L3 level;
	Total cross-sectional area of psoas muscle at the L4 

level.
(IV)	 Anthropometric and other measures:
	Patient height;
	Circumferences (abdominal, thigh, calf);
	Liver fat fraction.

MRI and BCP: challenges and future

An increasing number of prospective investigations 
demonstrated interesting results for whole-body MRI for 
muscle and fat evaluation. Similarly, the topic of muscle 
quality and BCP assessment with MRI has gained increasing 
attention, as shown by a doubled number of publications 
focusing on fat volume assessment in MRI in the last  
5 years (22).

Since on one hand, MR is valid, reliable and reproducible 
for the assessment of muscle quality and quantity, and 
on the other hand, first prospective studies have shown 
promising results for application in preventive medicine and 
disease (or therapy) monitoring, the time is now to leverage 
the technique on a clinical routine level.

As typical for novel techniques, several sources of 
systematic errors and difficulties may be challenging. 
First, as previously described, data quality and validation 
are necessary for multi-center comparison. Substantial 
differences in data acquisition may be corrected post-
hoc in academic settings but are important limitations to 
introduce those techniques in routine clinical practice. It 
is therefore important to establish and provide clinicians 
and non-academic imaging experts with normative values 
of BCP measures, specific for races, age and sex and with 
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Figure 3 Quantitative methods of muscle quality assessment in MRI. Apart from regular anthropometric measures and cross-sectional area 
segmentation of (A,E) fat-only- and (B,F) water-only-maps, MRI also allows for sub-visual assessment of muscle quality, e.g., utilizing (C,G) 
absolute fat-fraction, and (D,H) water-fraction-maps for analysis of e.g., intra- and intermuscular adipose tissue (arrow in A and E). The images 
of the two top rows (A,B,C,D) show a mid-thigh slice of axial whole-body scans of a healthy 23-year male student who does on average 6 to 
7 hours of sports activities per week. Images (E,F,G,H) show analog representative images of an 82-year-old male individual (sportive activity 
unknown) with markedly increased areas of intermuscular adipose tissue and in comparison, mild atrophy of the muscular circumference.

appropriate inter-scanner comparability. Furthermore, 
comparable post-hoc evaluation by automated segmentation 
software will be important to guarantee data validity. With 
respect to scan comparability, different groups have made 
efforts in the recent past to demonstrate excellent multi-
center reproducibility as well as reproducibility between 
different field strengths. On one hand, scan protocol 

harmonization and user training may be crucial to achieving 
acceptable reproducibility of manually assessed quantitative 
measures (100). However, semi-automated assessment, 
which will be of increasing importance, requires even more 
sophisticated strategies to allow for multi-scanner and 
-center comparison. Karlsson et al. therefore demonstrate an 
accurate and reproducible segmentation method based on 
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non-rigid multi-atlas registration of muscle volumes (101),  
which is also used by a large vendor specialized in body 
compartment assessment.

Another challenge is the huge amount of MRI data per 
whole-body scan. A typical whole-body MRI produces 400 
to 500 images per composed series (e.g., in-phase, opposed-
phase, fat-only- or water-only-images). Without robust and 
fast automated segmentation solutions, BCP assessment 
with whole-body MRI will be very time consumption up to 
several hours per patient, which is far more than an average 
clinical radiologist is allowed to spend for one examination. 
Alternatives to whole-body solutions may, however, focus 
on the investigation of data reproducibility that is derived 
from representative single- or few-slice segmentations. 
The most representative single slice region of whole-body 
compartments is believed to be on a lumbar spine level. 
More specifically, Schweitzer et al. suggest the level of the 
third lumbar vertebra as optimum in terms of reproducibility 
and corre la t ion  wi th  body compartments  (102) .  
As mentioned before, likewise approaches may be a 
legitimate strategy for a restricted spectrum of clinical 
tasks, e.g., initial sarcopenia assessment in an opportunistic 
screening setting. However, the aspect of reduced accuracy 
must be considered carefully for the majority of clinical 
demands. Most importantly, more recent studies have 
proven the inferiority of single-slice technique compared 
to whole-body compartment assessment, and this method 
furthermore lacks the required reproducibility for e.g., 
longitudinal studies, as demonstrated by recent CT-, 
and more recently MR-related investigations (103,104). 
Another strategy in assessing these large data amounts is 
the utilization of automatic registration and segmentation 
algorithms. Especially within the last few years and rising 
with the use of artificial intelligence in radiology, several 
groups have made efforts in testing different segmentation 
concepts for whole-body imaging, muscle and fat 
compartment assessment. While the first studies mostly 
focused on CT images, an increasing body of literature has 
recently focused on automated segmentation of different 
regions and for different radiologic subspecialties in 
MR and CT as well. A recently published review article 
describes 408 included original papers that aimed to 
automatically segment tissue (20). For the musculoskeletal 
system, Dice similarity coefficients around 0.9 are currently 
being achieved (20). While most of these applications are 
limited to research questions, it may be expected, that also 
due to improvements of expertise among the radiologic 
community regarding implementation of machine learning 

these algorithms will be part of clinical routine soon.
The acquisition itself has been usually tested in quite 

homogeneous populations that were able helping to 
acquire flawless imaging (or else excluded from many 
studies). However, whole-body muscle assessment is usually 
performed using a composition of many smaller acquisition 
stacks. At the levels of the trunk, these series are usually 
acquired performing breath-holds, not seldom for up to 
20 seconds. This is not only challenging in elderly patients 
due to their reduced functional lung capacities but may 
remain impossible for intensive care unit patients, a cohort 
where BCP has significant implications on their nutritional 
therapy and outcome (95). Even CT has been investigated 
scarcely for monitoring of nutritional status (105).

Finally, the main challenge remains in the interpretation 
of image-based results. Sarcopenia is confirmed by imaging 
findings; however, disease severity is based on physical 
examination and tests that relate to patients’ physical 
activity. Since normative values may vary throughout 
different populations and among various types of body 
constitution (94), the interpretation of relatively low or 
high measures of muscle quality or volumes is difficult 
and requires awareness among diagnostic radiologists. 
Premature use of pathologic ranges may cause false-positive 
diagnoses with all its consequences, e.g., cost-intensive 
patient careers and uncertainty of healthy individuals. 
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