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Introduction

In in vivo MR imaging applications such as whole-body 
screening (1-11) and activation mapping in functional MRI 
(12-25), relatively low resolution MR imaging is often used 
due to the requirement of large field-of-view (FOV) or rapid 
imaging speed. The tradeoff for the shortened acquisition 
time in low resolution imaging is the dramatically reduced 
acquisition of high frequency components of MR signals. 
Images with lack of high frequency information provide 
limited details of the imaging objects. Recently, compressed 
sensing (CS) imaging technique (26,27) has been used to 
reduce the acquisition time and raw data size by significantly 
undersampling the k-space for MRI (28-50). Based on CS 
technique, the interpolated compressed sensing (iCS) MRI 
(51-53) is proposed and has demonstrated the advantages in 
multiple slice MR imaging acquisitions for improving image 

quality and contrast by utilizing the raw from other slices 
and the weighting functions. In this work, we investigate 
a novel strategy to improve image quality for multiple-
slice low resolution imaging by using the sparse sampling 
technique. In a multiple-slice low resolution acquisition, 
on the top of the k-space data acquired for forming the 
low resolution image, more k-space data of one center 
slice will be acquired by using the incoherent sampling 
strategy. The extra k-space data of the center slice would 
be able to enhance the high frequency information and 
thus increase the image resolution, ultimately providing 
more detailed information of the image. Based on the 
low resolution data, weighting functions which reflect the 
difference between the center slice and other slices (or 
target slices) can be generated. The extra data acquired in 
the center slice will be interpolated to the other slices after 
multiplying the corresponding weighting functions. The 
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image reconstruction for each slice will then be performed 
by using the CS reconstruction algorithm. This strategy is 
able to enhance the quality of the low resolution images in 
the multiple slice imaging, in terms of resolution, contrast 
and image fidelity. In vivo MR imaging of human brain was 
applied to investigate the feasibility and performance of the 
proposed method. Comparison with original low resolution 
images in image error was also performed.

Theory and methods

The proposed strategy for multiple-slice acquisition of 
the low resolution images is shown in Figure 1. To acquire 
the multiple-slice low resolution images together with the 
randomly undersampled k-space data of one center slice, 
we need to modify the conventional imaging sequences by 
adding sparse acquisition strategy to the center slice. 

Firstly, the weighting functions between the center 
slice and the other slices are generated by calculating the 
quotient between the two images:

W I
II = 1

2
[1]

where I1 and I2 denote the original low resolution images 
of the center slice and the other slices, respectively. By 
taking Fourier Transform the weighting functions in k-space 
domain are obtained:

W F Wk I= ( ) [2]

where Wk is the weighting function in k-space. 
Secondly, the estimated k-space data of the target slice are 

calculated by taking convolution of the weighting function 
and the undersampled k-space data of the center slice:

S S Wk new k center k_ _= ⊗ [3]

where Sk_center is the raw data of the center slice undersampled 
by using sparse MRI strategy, while Sk_new is the estimated 
raw data of the target slice. 

The final step is to interpolate these estimated data to 
the k-space of the original low resolution images of the 
target slices. By using nonlinear Conjugate Gradient (CG) 
reconstruction similar to that used in conventional CS MRI, 
an improved image with improved image resolution and 
lower image error can be obtained. 

To validate the feasibility of the method, an acquisition 
example, capable of implementing the proposed method 
with human brain imaging was designed. The design 
procedure is shown in Figure 2. A total of 9 slices 
were acquired at low resolution. The extra randomly 
undersampled data were acquired for the center slice. These 
acquisitions (i.e., original low resolution and the extra 
data for the center slice) could be combined in one single 
imaging sequence and accomplished in a single acquisition. 
In image reconstruction, the weighting functions were 
calculated according to Eq. [1] and Eq. [2] and the high 
frequency k-space data of the other 8 slices were estimated 
by using the Eq. [3]. Finally, nonlinear CG method was 
used to perform image construction for all slices by using 
the estimated k-space data.

Image errors in the reference and undersampled images 
were calculated to evaluate reconstruction performance. 
The image errors were obtained by subtracting the 
reconstructed images from the full k-space reference 
images. Specifically, the image error calculation used was 
calculated by using:
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Figure 1 Flowchart of the procedure for improving the image 
quality by using sparse undersampled raw data. CG, Conjugate 
Gradient.
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where I j
fRe  represents the signal intensity of the jth pixel 

in the full k-space reference images, and I j
us  represents 

the signal intensity of the jth pixel in the undersampled 
images reconstructed using the proposed method or the low 
resolution images. 

In comparison studies, we performed image reconstruction 
using other two methods—zero filling method and 
conventional CS method at the same acquisition time (or 
the same undersampling rate) as that used in the proposed 
iCS acquisition. Image error maps and contrast to noise ratio 
(CNR) were compared to evaluate the performance of the 
three different methods. 

Results

Figure 3 shows the human brain images of all the other 8 
slices (except the center slice). The first column illustrates 
the images reconstructed from full k-space data (raw 
data size was 512 by 512) which serve as the reference 
images. The second column is the images reconstructed 
from the proposed method. The third column is the 
images reconstructed from the low resolution k-space data 
with 75 phase encoding steps which has an equivalent 
undersampling rate to the proposed method in this study. 
The number of phase encoding for iCS acquisition was 64, 
while the sparsely undersampling rate of the center slice 

Figure 2 Diagram of the multi-slice two dimensional low resolution MR imaging strategy with interpolated compressed sensing 
undersampling data used in our MR experiment. A total of 9 slices were acquired in a single acquisition sequence. The center slice was 
undersampled by using both the sparse undersampling strategy (undersampling rate is 1/4 along phase encoding) and the low resolution 
sampling, while the other 8 slices were acquired using only regular low resolution sampling. The extra raw data of the center slice together 
with the weighting functions were used to estimate the missing raw data of the other 8 slices. The conjugated gradient algorithm was used to 
perform image reconstruction for all slices.
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was 1/4 in phase encoding direction (128 phase encoding). 
From the results shown in Figure 3, it is obvious that the 
image quality of the iCS method is higher than those of the 
same slice at low resolution acquisition. For quantitative 
evaluation and comparison, Eq. [4] was used to calculate 
the image errors for all slices. The residual images are show 
in Figure 4. The image errors for all the slices are shown 
in Table 1. These results demonstrate the significantly 
improved image fidelity of the proposed method.

Figure 5 shows the CNR of the images shown in Figure 3. 
The average CNR of each image is shown in Table 2. From 
the CNR maps and Table 2 we can see that the CNR of the 
iCS images are much higher than that of the low resolution 
images at the same acquisition time.

In the comparison with conventional CS method, 
undersampled images was acquired at the same acquisition 
time equivalent to that used for the iCS method, that is, 
the total phase encoding lines was 75 for each of the 9 
slices in the multi-slice acquisition. By using the same 
conjugated gradient reconstruction strategy, conventional 
CS reconstructed images were obtained. The results of the 
comparison between the images reconstructed from the iCS 
method and conventional CS method for all the slices are 
shown in Figure 6. The average image error of conventional 
CS method was 14% larger than that using the proposed 
interpolated CS method. In addition, enlarged artifacts 
can be clearly observed in the images reconstructed using 
conventional CS. This further demonstrates the advantage 
of the proposed strategy in low resolution multiple-slice 
imaging.

Discussion and conclusions

A method for improving imaging quality in multi-
slice low resolution imaging using iCS is proposed and 
investigated. The promising results in the in vivo human 
brain imaging validation and the comparison with the 
conventional imaging method at the same acquisition time 
have demonstrate the feasibility and advantages of the 
proposed method for multi-slice low resolution imaging. 
By acquiring extra sampling data of one center slice using 
the incoherent undersampling strategy in CS, more high 
frequency information in the k-space can be obtained in all 
slices, ultimately leading to improved images with higher 
CNR and spatial resolution. The proposed technique 
might directly benefit the imaging applications with the 
requirement of large FOV and/or fast acquisition. 

In the proposed technique, the accuracy of the weighting 

Figure 3 8-slice in vivo human brain MR images in axial plane. 
The first column shows the reference images fully sampled  
(512×512 matrix size) and reconstructed using sum of square 
method. The second column shows the images acquired 
and reconstructed by using the proposed iCS method. The 
undersampling rate for the center slice is 1/4 and the low 
resolution image of all the 9 slices are 1/8. The third column shows 
the low resolution images with the same raw data size (~1/7 raw 
data for each slice). iCS, interpolated compressed sensing.
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Figure 4 The comparison in the image errors. The first column is 
the image error of the images acquired by using the proposed iCS 
method. The second column is the image error of the zero filling 
reconstructed images. The iCS images show the much reduced 
average image error over the low resolution images with zero-
filling. iCS, interpolated compressed sensing.

Figure 5 Comparison of the contrast to noise ratio (CNR) of 
the two imaging strategies. The first column is the CNR of 
iCS images. The second column is the CNR of the zero filling 
reconstructed images. Comparing with the low resolution images 
with zero-filling, higher CNR of iCS images can be clearly 
observed. iCS, interpolated compressed sensing.
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Figure 6 Comparison between the images reconstructed from 
the iCS method (left column) and conventional CS method (right 
column) at the same acquisition time or the same undersampling 
rate. The average image error of the images from CS method is 
14% higher than that of the images from iCS reconstruction. iCS, 
interpolated compressed sensing; CS, compressed sensing.

Table 2 The average CNR of the iCS reconstructed image and 
the conventional zero filling reconstructed images. The CNR 
of each slice is significantly improved by using the iCS method 
compared with that of the conventional zero filling reconstructed 
images at the same acquisition time

CNR

iCS Low Res

Slice 1 10.4 3.8

Slice 2 10.7 3.8

Slice 3 10.2 3.8

Slice 4 10.2 3.8

Slice 6 9.6 3.9

Slice 7 9.8 3.8

Slice 8 10.5 3.7

Slice 9 10.0 3.8

CNR, contrast to noise ratio; iCS, interpolated compressed 

sensing; Low Res, low resolution image.

Table 1 The average image error of the iCS reconstructed image 
and the conventional zero filling reconstructed images compared 
with the full k-space reference image. By using the proposed iCS 
method, the image error of each slice can be reduced significantly  
compared with that of the zero filling method at the same  
acquisition time

Average image error

iCS Low Res

Slice 1 11.3 20.6

Slice 2 10.5 20.5

Slice 3 6.9 14.6

Slice 4 8.0 9.7

Slice 6 11.8 13.1

Slice 7 10.6 14.3

Slice 8 12.2 18.5

Slice 9 7.3 16.3

iCS, interpolated compressed sensing; Low Res, low  

resolution image.
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function is critical to the accuracy of the interpolated k-space 
data and thus image fidelity. In generation of the weighting 
functions for interpolating the k-space data into the target 
slices, due to the finite Fourier transform and the noise 
generated during the scanning procedure, the weighting 
functions generated might not be accurate enough. 
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