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Introduction

MRI has been increasingly used to characterize stroke injury 
in infarct age, volume and territory, clotted vascular structure, 
degree of hypoperfusion, cerebral metabolite, penumbra 
evolution, and viability of tissue at risk after stroke onset  

(1-5). As each MRI parameter can be associated with one or 

multiple specific tissue structural or physiological properties, 

the combined usage and analysis of these complementary 

MRI parameters, or multiparameter MRI approach, can 

provide integrated and systematic information about the 
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ischemic cascade after stroke insult. However, due to the 
intrinsic limitation of MRI techniques [each k-space line 
is usually acquired after every repetition time (TR)] and 
physiological limitations [rapidly switched gradients result in 
neuromuscular stimulation and excessive radio frequency (RF) 
pulses cause RF power over-exposure and tissue heating], 
one MRI measurement can take from minutes to hours to 
obtain optimal images. As speed is a critical consideration in 
acute stroke imaging, multiparameter MRI in clinic is usually 
conducted with only 2-3 MRI modalities [mostly diffusion-
weighted imaging (DWI), perfusion MRI, and T2-weighted 
imaging (T2W)], limiting its effectiveness and application 
in acute stroke examination. The advent of parallel imaging 
with multichannel RF coils lead to a dramatic acceleration 
of imaging speed in conventional MRI scans, resulting in 
revolutionary advances in MRI techniques and increasing 
applications in the clinic and preclinical studies (6-8). 
Therefore, parallel imaging technique can provide an 
effective approach to facilitate multiparameter MRI studies 
in stroke disease. 

In comparison with popular rodent models of stroke, 
non-human primates (NHPs) are most closely related to 
human beings in anatomy, physiology, social complexity and 
cognitive capabilities. Many NHP models of stroke have 
been explored successfully (9-15), allowing for stroke disease 
to be evaluated under controlled conditions and examined 
with various non-invasive methods including imaging, 
behavior and neurological examination. Therefore, the NHP 
models together with multiparameter MRI approach can 
provide an ideal platform for studying the pathophysiological 
mechanism of stroke disease and therapeutic development. In 
the present study, a fast multiparameter MRI approach was 
implemented using parallel imaging technique and optimized 
for examining the acute stroke injury in a macaque model 
with transient ischemic occlusion.

Methods and materials

Subjetcs

Adult rhesus monkeys (n=4, female, 6.3-11.3 kg, 9-15 years 
old) were utilized in the present study (Table 1). The subjects 
were initially anesthetized with ketamine (5-10 mg/kg, IM), 
then orally intubated. During surgery and MRI scanning, 
animals were anesthetized with 1-1.5% isoflurane mixed with 
100% O2 while spontaneously-breathing. Body temperature 
was maintained at 37.5 ℃ by a feedback-regulated circulating 
warm-water blanket. In order to restrain the subjects for 

surgery and MRI scanning, anesthetized subjects were further 
immobilized with a custom-made head holder and placed 
in the “supine” position which is generally used in clinical 
MRI for patients. Et-CO2, inhaled CO2, O2 saturation, 
blood pressure, mean arterial pressure (MAP), heart rate, 
respiration rate, and body temperature were monitored 
continuously and maintained in normal ranges (16). The 
procedures were approved by the Institutional Animal 
Care and Use Committee (IACUC) of Emory University 
in accordance with the NIH Guide for Care and Use of 
Laboratory Animals. 

Transient cerebral ischemia was induced by middle cerebral 
artery (MCA) occlusion with a minimal invasive interventional 
approach (13). Briefly, a microcatheter was inserted into the 
femoral artery under fluoroscopic guidance and the distal M2 
section of MCA was occluded with a microcatheter tip (n=2) 
or microcoil (n=2) for 3 hours. The MCA occlusion of each 
subject was confirmed by digital subtraction angiography 
(Siremobil Compact L fluoroscopic system, Siemens Medical 
Solutions USA, Inc, Malvern, PA, USA). The reperfusion 
(microcatheter or microcoil removal) occurred under 
flouroscopy (before the animals were moved to MRI).

MRI evaluation

MRI was performed using a Siemens 3T Trio clinical 
scanner (Siemens Medical Solutions USA, Inc, Malvern, 
PA, USA) equipped with an 8-channel phased-array knee 
coil (Invivo Inc, FL, USA). Imaging modalities included: 
MR angiography (MRA) by time of flight (TOF) sequence,  
T1-weighted imaging (T1W) by a 3D magnetization-prepared 
rapid acquisition gradient echo (MPRAGE) sequence, T2W by 
fast spin-echo sequence, magnetization transfer (MT) imaging 
or magnetization transfer contrast (MTC) MRI by a custom-
designed echo-planar imaging (EPI) sequence, diffusion tensor 
imaging (DTI) by single-shot EPI, and quantitative cerebral 
blood flow (CBF) using continuous arterial spin labeling 
(CASL) (17,18). Proton MR Spectroscopy was conducted 
using the chemical shift imaging (CSI) or MR spectroscopic 
imaging (MRSI) sequence with weighted phase-encoding 
acquisition, outer-volume tissue suppression and CHESS 
water suppression (19,20). The generalized autocalibrating 
partially parallel acquisitions (GRAPPA) reconstruction 
strategy was utilized for parallel imaging acceleration. The 
MRI acquisition parameters of each measure were illustrated 
in Table 2. In addition, each ASL scan had 40 pairs of control 
and label images and each MTC scan had 8 measurements for 
signal average. 



114 Zhang et al. Multiparameter MRI of acute stroke injury 

© AME Publishing Company. All rights reserved. Quant Imaging Med Surg 2014;4(2):112-122www.amepc.org/qims

Table 1 Demographic data for animal age, body weight, stroke occluder, and infarct volume after 3-hour transient MCA occlusion.  
Volume unit: mL

Animal ID RTM5 RWV4 RLB6 RYL7

Age (years) 14.7 11.8 12.5 9.5

Body weight (kg) 9.2 11.3 7.7 6.3

Occluder Microcatheter tip Microcatheter tip Microcoil Microcoil

Infarct volume (half hours after reperfusion) 0.32 2.10 0.20 0.34

Infarct volume (two and half hours after reperfusion) 0.33 2.80 0.20 0.91

MCA, middle cerebral artery.

Table 2 MRI experimental parameters for MRA, T1W, T2W, DTI, ASL-CBF, MTC, T2, and proton MRS of stroke monkeys on a  
clinical 3T scanner

MRA T1W T2W DTI ASL-CBF MTC T2 MRS

TR (ms) 39 2,400 6,300 5,000 3,830 2,220 5,780 1,700

TE (ms) 7.33 3.73 125 87 21 20 9.1/64/82/146 30

FOV (mm) 112×112 116×116 96×96 96×96 96×96 96×96 96×96 64×64

Data matrix 448×448 192×192 192×192 64×64 64×64 64×64 128×128 16×16

Number of averages 2 2 2 4 4 1 1 4

Flip angle (degree) 15 8 90 90 90 90 90 70

Bandwidth (Hz) 147 130 110 1,346 1,698 1,474 399 1,200

Voxel size (mm3) 0.25×0.25×1 0.6×0.6×0.6 0.5×0.5×1.5 1.5×1.5×1.5 1.5×1.5×1.5 1.5×1.5×1.5 0.75×0.75×1.5 4×4×10

Scan duration  

(minutes)

7:44 6:40 3:09 12:02 20:56 3:04 3:35 8:10

MRA, MR angiography; T1W, T1-weighted imaging; T2W, T2-weighted imaging; DTI, diffusion tensor imaging; ASL, arterial spin 

labeling; CBF, cerebral blood flow; MTC, magnetization transfer contrast; MRS, MR spectroscopy.

Immediately after the reperfusion, the monkeys were 
moved into the MRI scanner and examined with MRA, 
T2W, T1W for vascular and anatomical imaging, and T2, 
CBF, DTI, MTC, MRS measurements for quantitative 
evaluation of the stroke injury. The time between the 
removal of occluder and acquisition of the first MRI scan was 
30 minutes or less. DTI images were collected at 0.5, 1.5,  
2.5 hours post reperfusion. CBF data were collected at 0.75 
and 2.75 hours post reperfusion. Structural T1W images 
were collected before and after intravenous Gadolinium 
contrast agent injection (0.02 mg/kg, IV; Omniscan, 
GE Healthcare, USA). All the MRI measurements were 
accomplished by using the single setting with the phased-
array volume coil. 

In addition, for comparison purpose, the MRI protocols 
were tested and compared with a comparable quadrature 
volume coil (Siemens extremity knee coil, Siemens Medical 
Solutions USA, Inc, Malvern, PA, USA) on a normal 
healthy adult rhesus monkey.

MRI data processing

The MRA, T2W, T1W images were processed and displayed 
with the Syngo medical imaging software in the Siemens 3T 
scanner console. MRS data was processed with the Siemens 
spectroscopy package in the console. DTI images were 
processed with the DTIstudio software (21). T2, MTC, 
CBF maps, stroke infarct volume were calculated with the 
home-built Matlab scripts (MathWorks Inc, MA, USA). The 
infarct volume of each subject was estimated from the mean 
diffusivity (MD) maps (22).

Histology

Animals were sacrificed immediately by pentobarbital 
overdose for brain harvesting without recovery from 
isoflurane anesthesia after the MRI examination. 
Intracardial perfusion was conducted with saline followed 
by 10% buffered formalin. Hematoxylin and eosin (H&E) 
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staining was performed for validating the stroke lesion.

Results 

MRI data acquisition optimization 

The monkey brain imaging protocols including T1W, T2W, 
MRA, and DTI were evaluated with the 8-channel phased-
array volume coil and Siemens extremity quadrature volume 
coil. As shown in Figure 1, the scanning duration for T1W, 
T2W, MRA with GRAPPA were reduced by almost 50% 
with the image quality comparable to that acquired with 
the regular quadrature coil setting without parallel imaging. 
Meanwhile, the DWI images derived from DTI with parallel 
imaging acquisition show evident distortion reduction in the 
frontal lobe in comparison with that acquired without parallel 
imaging. In addition, regular EPI images acquired with 
GRAPPA (R =2) have similar TE (20 vs. 21 ms) as those with 
the partial Fourier acquisition strategy (23,24). As the EPI 
images acquired with partial-Fourier showed slightly higher 
signal to noise ratio (SNR) than that with GRAPPA, the 
partial-Fourier (R =6/8) acquisition was used in the CASL 
scans. No GRAPPA was applied in the CSI scan due to the 
tradeoff of SNR decrease in parallel imaging technique. 

The optimization results of regular and diffusion 
weighted EPI sequences are shown in Figure 2. Compared 

with the images acquired with standard sequence and 
partial-Fourier acquisition strategy, the GRAPPA 
acceleration factor R =2 offers optimal image quality for 
general EPI images and R =3 for diffusion weighted images. 
In particular, the image distortion artifact in the frontal lobe 
was reduced significantly.

The scanning duration for quantitative MRI measures 
including T2 map, ASL-CBF, DTI indices, MTC, MRS 
were about 3, 20, 12, 3, 8 minutes, respectively. Therefore, 
all the quantitative measurements can be accomplished 
within one hour, allowing the stroke evolution to be 
assessed hourly with the proposed multiparameter MRI 
approach after stroke onset.

Stroke injury evaluation with MRI

After the stroke animals were transferred into the scanner, 
DTI and MRA were conducted firstly to evaluate the vessel 
occlusion and stroke lesion, and then followed with ASL-
CBF, MTC, T2W, T2 maps and CSI. Lastly, T1W images 
were collected before and after Gadolinium agent injection. 
DTI and CBF scans were repeated three and two times 
respectively. Occluded MCA in a stroke subject is shown 
in the MRA image (Figure 3). The corresponding stroke 
lesion is exhibited explicitly in the T2W and DWI images, 
T2, MTC and MD maps (with arrows). Based upon the 

Figure 1 Comparison of various MRI images. (A) T1-weighted; (B) T2-weighted; (C) MR angiography; (D) diffusion-weighted images of 
an adult monkey brain acquired with and without parallel imaging (GRAPPA). Top, using quadrature volume coil; bottom, using 8-channel 
phased-array volume coil; TA, acquisition time.

T1-weighted                      T2-weighted              MR Angiography         Diffusion-weighted
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Figure 2 Comparison of regular EPI and DWI images of an adult monkey brain. Top, regular EPI images acquired with no GRAPPA, 
partial-Fourier, GRAPPA (R =2) and GRAPPA (R =3); bottom, DWI images acquired with no GRAPPA, GRAPPA (R =2), GRAPPA (R =3), 
and GRAPPA (R =4), b value =1,000 s/mm2. EPI, echo-planar imaging; GRAPPA, generalized autocalibrating partially parallel acquisitions. 
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Figure 3 Illustration of stroke lesion. Top, MR Angiography, T2W, T1W, and DWI images of an adult stroke monkey (RLB6) post 
reperfusion; bottom: quantitative MRI measures (T2, MTC, CBF, and MD maps) of the same monkey. The monkey (RLB6) was induced 
with 3-hour transient MCA occlusion. Arrows: stroke-injured regions. MRA, MR angiography; T2W, T2-weighted imaging; T1W, T1-
weighted imaging; MTC, magnetization transfer contrast; CBF, cerebral blood flow; MD, mean diffusivity; MCA, middle cerebral artery.

MRA T2W T1W DWI

MDCBFMTCT2

T1W images post gadolinium injection, no hemorrhage was 
observed in any subject. Also, stroke-induced hypoperfused 
regions are observed in the CBF map (pointed with arrows).

The progressive CBF changes in the whole brain of a 
stroke subject after 3-hour transient MCA occlusion are 

illustrated (Figure 4), revealing slight CBF changes from 
the 0.75 to 2.75 hours post reperfusion. The stroke infarct 
volumes are tabulated in Table 1. The results demonstrate 
that the infarct volume increased after reperfusion in two 
subjects (RWV4 and RYL7). In comparison, the infarct 
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Figure 4 Illustration of stroke lesion in the monkey RLB6 with 3-hour transient MCA occlusion. Top, DWI images half hours post 
reperfusion; Middle, CBF maps 0.75 hours post reperfusion; bottom, CBF maps 2.75 hours post reperfusion. Ten slices were selected for 
demonstration. CBF unit, mL/100 g/min. CBF, cerebral blood flow; MCA, middle cerebral artery.
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volumes of the subjects RTM5 and RLB6 remained almost 
unchanged after reperfusion. Also, as shown in Figure 5, 
reduced NAA and increased lactate were observed after 
reperfusion. The stroke lesion of the subject RWV4 was 
further validated using H&E staining (Figure 6).

Discussion 

The application of parallel imaging technique dramatically 
reduced the scanning duration in MRA, T1W, T2W, and 
improved the imaging quality of DTI images of macaque 
brain. Also, all the measurements were accomplished with 

a single setting, enabling the MRA, T1W, and T2W scans 
together with multiple quantitative imaging modalities 
including T2, DTI indices (FA and MD), CBF, MTC, 
and MRS to be conducted within one hour for temporal 
evaluation of acute stroke injury in a NHP model of 
ischemic stroke. 

Imaging acceleration in MRA, T1W, T2W scans and 
image quality improvement in DTI images with GRAPPA 

High-resolution T1-weighted images acquired with the 
MPRAGE sequence are generally used for structural 

Figure 5 In vivo proton spectra on the lesion side (left) and contralateral side (right) of a stroke monkey (RLB6), acquired with two-
dimensional chemical shift imaging (2D CSI), two and a quarter hours post reperfusion. Cr, creatine; NAA, N-acetylaspartate; LAC, lactate.
Arrow: voxel location.

       Stroke Side		                   	 Contralateral Side   

A
rb

itr
ar

y 
un

it

Cr

NAA
NAA

LAC

Cr



118 Zhang et al. Multiparameter MRI of acute stroke injury 

© AME Publishing Company. All rights reserved. Quant Imaging Med Surg 2014;4(2):112-122www.amepc.org/qims

Figure 6 Illustration of stroke lesion. Top, axial T2W images of a stroke monkey (RWV4) 2.5 hours post reperfusion; Middle, reconstructed 
coronal T2W images of the same stroke monkey; bottom: H&E staining of the same stroke monkey brain. 

identification, segmentation or brain volumetric analysis. A 
prior clinical study has demonstrated that the application 
of parallel imaging with GRAPPA dramatically reduced 
the MPRAGE acquisition time (TA) without introducing 
detrimental effect to brain tissue segmentation and 
volumetric measurement (25). In the present study, no 
obvious difference in T1W images was seen visually 
between the scans acquired with the regular quadrature and 
phased-array coils (Figure 1). 

As seen in Figure 1, application of parallel imaging 
technique and the 8-channel phased-array coil results 
in a dramatic (~50%) reduction in T1W, T2W, and 
MRA scan durations while keeping sufficient quality for 
illustrating the anatomical structures of monkey brain. As 
T2 map is derived from serial T2W images acquired with 
different TEs, the corresponding scanning duration is 
reduced considerable as well. Accordingly, parallel imaging 

technique allows more imaging modalities to be conducted 
within a limited time window. 

DTI is a non-invasive MRI technique to detect the water 
diffusivity of brain tissue in vivo and has been used widely 
in stroke studies (26-30). As DTI is usually performed by 
using a single-shot spin-echo EPI sequence with long TE 
and strong gradient pulses, DTI images are complicated 
with susceptibility artifacts and eddy-current induced effects 
which become severe in the high and ultrahigh magnetic 
field scanners. In comparison with human brain, macaque 
brain is much smaller (1,200-1,300 vs. ~100 cc). Therefore, 
much higher spatial resolution is required to achieve 
acceptable image quality. Clinical MRI scanners have 
large magnet bore which facilitates animal handling and 
experimental setting significantly. However, these scanners 
are usually equipped with lower gradient strength (4 G/cm)  
and limited B0 shimming system compared to regular 
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animal scanners (40 G/cm or more). Therefore, DTI 
images of a macaque brain can be complicated with severer 
image distortion and susceptibility artifacts due to increased 
spatial resolution required for a small brain. The present 
optimization results exhibit the relationship between 
GRAPPA acceleration factor and DTI image quality, and 
demonstrate that optimal DTI images can be obtained by 
using parallel imaging technique with a clinical setting. 
Thus, the further integrated data analysis can be facilitated 
with the improved image quality. 

Anatomical and quantitative MRI measurements 

Stroke results in a pathophysiological cascade of metabolite, 
microstructural, molecular and cellular changes. Many 
MRI parameters have been explored and demonstrated the 
capability and potential to assess stroke injury. Briefly, (I) 
DWI is known to be the most sensitive MRI modality to 
detect a cerebral infarct in minutes after stroke insult (31). 
Also, apparent diffusion coefficient (ADC) (derived from 
DWI images) decreases over time during acute stroke and 
then returns to the pseudonormal value. The combined 
DWI images and ADC maps may be used to estimate the 
infarct territory and age (32). In contrast, DTI can offer 
much more complimentary information including the tissue 
diffusivity (radial and axial diffusivity, MD or ADC) and 
fractional anisotropy (FA). Especially it allows for detecting 
the white matter microstructural disruption in stroke injury 
or brain remodeling in chronicle stage (26,28,29), and may 
be more sensitive than DWI to white matter ischemia (33); 
(II) hyperintense in T2W images reveals the vascular brain 
edema in acute ischemic stroke. T2-value is dependent 
on brain tissue water content and changes over time after 
stroke onset (34) and is a quantitative measure to detect 
water uptake in ischemic tissue (1,35); (III) artery occlusion 
results in immediate CBF reduction in the corresponding 
territory of the occluded vessel and the absolute CBF 
values indicate the cell viability after stroke insult. Most 
importantly, the diffusion-perfusion mismatch approximates 
the ischemic penumbra and has been used as a surrogate 
marker of the tissue at risk (4,22); (IV) magnetization 
transfer imaging can be used to detect macromolecular 
disruption. Previous results have showed the potential 
to detect edema and loss of cellular structure during the 
progression of ischemic stroke in patients and rodents 
(36,37); (V) the blood-brain-barrier (BBB) permeability 
disruption is usually seen in stroke brains and may cause 
hemorrhage complication. T1W images post Gadolinium 

injection can reveal the possible hemorrhage and abnormal 
volumetric changes due to swelling in acute stroke as well. 

As illustrated in the MRA image (Figure 3), the M2 
section of MCA was still occluded after reperfusion probably 
due to secondary clot formation or vasospasm after catheter 
intervention. The cortical infarct is seen on T2W and 
DWI images. In addition, the abnormality is observed in 
quantitative measures including T2, MTC, MD (marked 
with arrows), consistent with the DWI finding (Figure 3). 
CBF reduction is seen in the cortical and subcortical regions 
(labeled with arrows). Benign oligemia is also observed in the 
subcortical regions most likely due to the surgical procedure 
as mentioned above. Progressive CBF measurements of the 
whole stroke monkey brain exhibit slight regional changes 
in brain hemodynamics after reperfusion (Figure 4). The 
present results suggest that a longitudinal survival study 
in the future should provide more comprehensive and 
quantitative assessment of stroke injury.

In addition, it is known that cerebral ischemia results 
in intracellular metabolism alteration after stroke onset. 
Increased lactate and reduced NAA reveal the abnormal 
status of cellular metabolism after stroke injury (5,38-40). In 
particular, proton MRS can reveal the abnormal neuronal 
death in the region adjacent to the stroke infarct while it 
appears normal in the T1W and T2W images (41). The 
metabolite alternation in a stroke monkey is illustrated 
after transient stroke attack (Figure 5). Obviously, the MCA 
occlusion caused the NAA reduction and lactate elevation in 
the injured brain region, in agreement with previous findings 
in stroke patients and animals (38,41-44). 

Stroke infarct evaluation during acute ischemic stroke

In the present study, micro-catheter tip and endovascular 
microcoil (usually used for brain aneurysm treatment) were 
used as occluders to induce 3-hour MCA occlusion in adult 
macaque monkeys (n=2 for each occluder). As seen in Table 1, 
lesion sizes varied across the four animals and the microcoil 
may induce more consistent infarction than a microcatheter tip. 
However, the variation of infarction volume might be mainly 
caused by the MCA collateralization in each monkey (45). Also, 
the infarct volumes in two animals (RTM5, RLB6) remained 
almost unchanged in the following 3 hours after reperfusion 
probably due to the developed collateral circulation in these 
two animals. 

Multiparameter MRI is generally incorporated in the 
high-field or ultra-high, small-bore research scanner which 
is equipped with enhanced gradient system and abundant 
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pulse sequences for different imaging purposes in preclinical 
studies. In contrast, these hardware and software resources 
are not readily available in most clinical scanners with much 
lower gradient strength and conventional MRI protocols 
for general clinical diagnostic purposes. Any non-standard 
imaging protocols such as ASL perfusion or MT imaging, 
or most novel MRI pulse sequences, will require specific 
development and optimization. As demonstrated in the 
present study, a fast multiparameter MRI approach for 
imaging stroke macaques was implemented by combining 
conventional clinical protocols and custom-developed 
pulse sequences in a high-field clinical setting. Especially, 
the multiple quantitative MRI parameters (T2, CBF, DTI 
indices, MTC, MRS) can be obtained within one hour for a 
macaque model of stroke, allowing integrated information to 
be collected with high temporal resolution during hyperacute 
stroke. Certainly, other stroke-related MRI measures such as 
ATP (46), T1-rho (47,48), Ktrans (49) et al., can be added for 
different research purposes. Meanwhile, the current ASL-
based perfusion measurement can be improved with pseudo-
continuous ASL (pCASL) (50,51) or 3D gradient and spin 
echo (GRASE) (52) ASL technique. Certainly, a two- or 
three-coil setting ASL technique will offer optimal CBF 
measurement for macaques (16,53). Also, the image results 
shown in this report are mainly used for quick evaluation of 
stroke lesion. More deliberate MRI data processing can be 
conducted with the dedicated software packages such as FSL 
(www.fmrib.ox.ac.uk/fsl) for functional or structural image 
analysis and LCModel (www.s-provencher.com) for in vivo 
MR spectrum analysis.

In addition, due to the ethics and high cost of NHP 
species, the usage of NHPs (or other large animals) is much 
more limited than that of rodents. The multiparameter 
approach allows for maximal data collection in each animal 
to minimize the animal numbers or sample size in each study. 
Therefore, the use of multiple MRI parameter approach can 
be a powerful and effective means for studying the structural 
and physiological alteration and therapeutic development 
following stroke or other diseases in large animals. 

In conclusion, the application of parallel imaging 
technique substantially reduces TA of most time-consuming 
MRI measurements and allows fast and/or repeated 
examination of acute stroke injury with a multiparameter 
MRI approach. The established protocols are validated with 
a macaque model of stroke in a clinical setting and can be 
used for assessing the temporal evolution of stroke injury 
in NHP stroke models or likely in stroke patients. In fact, 
the translation of this approach to stroke patients will even 

benefit from the larger volume of the human brain.
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