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Introduction

Parallel transmission can reduce the excitation duration using 
the coil sensitivity pattern of a RF coil array (1-13). Recently, 
sparse undersampled k-space trajectory inspired by compressed 
sensing technique demonstrates the unique capability in 
shortening the excitation pulse width and thus accelerating the 
excitation (14-28). Unlike the parallel transmission technique, 
this method is simple and does not require specialized RF 
hardware. Studies show that the sparse parallel transmission, 
a technique combining parallel transmission and sparse 
undersampling, would be advantageous in fast excitation, 
providing augmented capability of reducing excitation time 
while maintaining the excitation fidelity (29,30). However, the 
conventional k-space trajectories take much time in traveling 
k-space samples. In implementing sparse parallel excitation, 

how to design an optimal k-space trajectory is an overarching 
issue needed to be addressed, which is technically challenging. 
Methods of designing a short k-trajectory to connect all the 
sparse excitation samples have been explored (30). In this 
study, we propose and investigate a randomly perturbed spiral 
k-space trajectory for sparse parallel transmission. The spiral 
trajectory is firstly designed using the k-space method (31,32) 
and then randomly perturbed by utilizing the variable density 
and Monto-Carlo sampling schemes (33) which are commonly 
used in compressed sensing MRI (34-49). Finally the gradient 
waveforms and parallel transmission pulses are designed. 
The feasibility of this method is evaluated by taking Bloch 
simulation of the sparse parallel transmission at different 
reduction rates. The accuracy of the excitation profile of each 
transmission is also investigated by calculating the maximum 
error of the passband. 
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Theory and methods

Figure 1 describes the design procedure of the proposed 
method. In this procedure, a conventional spiral k-space 
trajectory was designed firstly. Then, the Mote-Carlo 
incoherent sampling strategy was used to sample the k-space. 
These sparse sampling data were used to modify the path 
of the previous designed spiral k-space trajectory. The new 
trajectory was along the spiral trajectory. But if a sample 
generated by the sparse sampling strategy was outside the 
spiral trajectory, a new path with shortest distance would 
be generated to connect the spiral trajectory and the 
sparse sampling data. Thus by connecting all the sparse 
samples with the spiral trajectory, a randomly perturbed 
spiral trajectory was generated. Finally, the corresponding 
gradient waveforms on two dimensions were designed 
based on the proposed randomly perturbed spiral trajectory 
by using the time-optimal gradient method (50) which is 
able to design gradient waveforms with minimum time for 
arbitrary trajectory. The RF pulses of each channel for the 
sparse parallel transmission was then designed by using the 
spatial domain method (15).

An example of the 2-dimensional sparse parallel 
transmission pulses on the proposed randomly perturbed 
spiral k-space trajectory was designed and a numerical 
calculation of the block equation was performed to 
investigate the feasibility of the proposed method and the 
accuracy of the excitation profile. In this experiment, the 
desired excitation pattern was a cylinder with 6 cm diameter 
and the flip angle was 90°. The excitation was performed 
by using a 4-element RF coil array. The sensitivity pattern 

of each element of the coil array is shown in Figure 2. The 
k-space extension was 0.5 cycle/cm and 1,200 samples were 
chosen using the random undersampling schemes. The 
sparse parallel transmission with the reduction factor of 4 
was performed to maximize the acceleration capability of 
the design. Sparse parallel transmission with the reduction 
factor of 2 and a non-parallel transmission were also 
performed for comparison in terms of excitation accuracy. 
Furthermore, for validation of the proposed sparse parallel 
excitation method, excitation using regular spiral trajectory 
which had a similar length to that of sparse parallel 
excitation at the reduction factor of 4 was performed. 

 To fairly evaluate the excitation accuracy and the 
variation, the maximum value of the passband error 
was used. For 90° excitation, the desired normalized 
magnetization in passband is 1. Therefore the maximum 
passband error is defined as:

 
E M

n N xyn= −( )
=
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:1
1 [1]

In this equation, Mxyn denotes the magnetization of 
each position in the passband of the transverse plane of 
the excitation profile, while N denotes the number of the 
excitation positions in the passband. The maximum value 
reflects the worst case in the excitation profile, indicating 
the performance of the excitation. The smaller the error is, 
the more accurate the excitation is.

Results

In the sparse parallel transmission at the reduction factor 
of 4, the pattern of the randomly perturbed spiral k-space 
trajectory is shown in Figure 3A. It is illustrated that 
the samples are along a spiral trajectory, but randomly 
perturbed by incoherent data. The corresponding gradient 
waveforms designed based on this optimal trajectory 

Design a conventional spiral k-space trajectory

Design k-space samples using Monto-Carlo incoherent 
sampling schemes

Modify the spiral k-space by using the sparse sampling data

Design gradients using time-optimal gradient method

Design sparse parallel transmission pulses using spatial 
domain method

Figure 1 Design procedure of the sparse transmission pulses on 
randomly perturbed spiral k-space trajectory.

Figure 2 Sensitivity patterns of four elements of the RF coil array 
used in this study and the desired excitation profiles.
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are shown in Figure 3B. Both the gradients and the RF 
pulses satisfied the limitation of hardware of commercially 
available human MRI scanners. It is noticed that the rapid 
change of the gradient waveforms may present a challenging 
requirement on the hardware performance. Results of 
the excitation profiles of 4 individual RF pulses and the 
combined excitation profile are shown in Figure 4. The 
1D plot along the central line of the 2D excitation pattern 
(combined) is shown in Figure 4B. The excitation error is 
approximately 0.2 calculated by using the Eq. [1].

In the comparison study, sparse parallel transmission 
at the reduction factor of 1 (i.e., no reduction) and 2 were 
also performed using the same RF coil array and the same 
parameters. The 1D and 2D excitation profiles of the two 
experiments are shown in Figure 5. At the reduction factors 
of 1 and 2, the excitation errors are all in the range of 0.2 
calculated by using Eq. [1]. This result indicates that the 
excitation errors of the sparse parallel transmission pulses 
are at the same level of the conventional non-parallel 
transmission pulses, demonstrating that the proposed 

Figure 3 The randomly perturbed spiral k-space trajectory with the range from –0.5 to 0.5 on both directions (A), and (B) x (black) and y (red) 
gradient waveforms generated based on the proposed perturbed spiral k-space trajectory.

Figure 4 Excitation profiles of the 4 individual RF pulses; (A) their combined excitation profile; (B) 1D excitation profile along the central 
line. The excitation error of its passband based on Eq. [1] was ~0.2.
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perturbed spiral k-space trajectory is feasibility and 
efficiency in fast MR excitations. 

Figure 5E,F shows the results of excitations using 
conventional spiral k-space trajectory which has a similar 
length to that of sparse parallel excitation at the reduction 
rate of 4. Its passband error calculated from Eq. [1] was 
approximately 0.3, showing a degraded excitation accuracy 
over that of the proposed sparse parallel transmission on 

randomly perturbed spiral trajectory.

Discussion and conclusions

The method of designing sparse parallel transmission 
RF pulses on a randomly perturbed spiral sparse k-space 
trajectory is proposed and investigated. The optimal 
k-trajectory traveling through the sparse k-space samples 

Figure 5 (A,B) 2D and 1D excitation profiles of the non-accelerated transmission (i.e., reduction rate of 1); (C,D) 2D and 1D excitation 
profiles of the sparse parallel transmission at the reduction rate of 2 using proposed randomly perturbed spiral trajectory; (E,F) 2D and 1D 
excitation profiles of an RF pulse on regular spiral k-space trajectory for comparison purpose. The passband error of the regular spiral RF 
pulse was in the region of 0.3, which was worse than that of the proposed method (0.2).
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shortens the corresponding gradient waveforms and pulse 
width. The promising result of Bloch simulation has 
demonstrated the feasibility and efficiency of this method. 
The small ripples on both the in-slice and out-of-slice 
regions are partially due to the imperfection of the k-space 
undersampling and RF pulses, which need to be improved 
for better excitation accuracy. The comparison result of the 
sparse parallel transmissions at the reduction factors of 2 
and 4, and the non-parallel transmission demonstrates that 
the performance of the sparse parallel transmission at high 
reduction factors is at the same level of the non-parallel 
transmission strategy. Furthermore, this method can be 
also applied to non-parallel pulse designs and 3D spatial 
selective pulse designs.
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