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Introduction

Radiofrequency (RF) coil arrays with a set of surface coils 
(1-7) become more popular in MR imaging as they can 
provide improved signal-to-noise ratio and the capability of 
performing parallel imaging (8-30). Compared with surface 
coils, RF volume coils, such as birdcage coils (31), are able 
to generate homogenous magnetic fields (B1) and potentially 
uniform MR images (17,32-36,37-53). In recent years it 
has been demonstrated that multiple tuned volume coils 
for multiple nuclear MR applications (54) can be designed 
by integrating different type of birdcage coils which are 
intrinsically decoupled due to the cancellation of their 
magnetic flux. In this work, we propose and investigate a 
single tuned proton volume coil array based on that design 
concept using combination of different typed birdcage 
coils for improving SNR (31) and also for implementing 
parallel imaging (55-59) and parallel transmission (60-65) 
to accelerate imaging. To demonstrate the design concept, a 

3-channel volume coil array was designed, which consists of 
a conventional birdcage coil, a transverse birdcage coil, and 
a helix birdcage coil. All the three coils were intrinsically 
decoupled and tuned to 298 MHz which is corresponding 
to proton frequency at 7T. By taking advantage of the 
intrinsic decoupling feature, this volume coil array can be 
designed without using any decoupling circuitry between 
array elements. The performance of the volume coil array is 
evaluated using FDTD numerical simulation (39,66-69) in 
terms of the RF field distribution and mutual coupling. The 
parallel imaging performance of the 3-element volume coil 
array was also evaluated by calculating the g-factor map (56) 
at different acceleration rates for SENSE reconstruction.

Methods

The structure of the proposed multichannel volume coil 
array is shown in Figure 1. The inner coil is a 16-strut low-
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pass helix birdcage coil with 3 cm ID, the middle coil is a 
16-strut birdcage coil with 3.8 cm ID, while the outer coil 
is a conventional birdcage coil with 4.5 cm ID. The coils 
were all built using copper tape and the coil length was  
4 cm. Capacitors were place on each strut and used to tune 
the resonant frequency to 298 MHz. The coaxial feed port 
was modeled as a voltage source with 50 Ohm impedance. 
The software XFDTD6.4 (Remcom Inc., State College, 
PA, USA) was used to model this 3-channel birdcage coil 
array and evaluate the magnetic field distribution. The 
Yee cell size was 0.5 mm on both the transverse plane and 
longitudinal direction which was small enough for satisfying 
the accuracy requirement of the FDTD calculation. The 
boundary condition was set as Perfectly Matching Layers 
(PML). To ensure the calculation stability and accurate 
performance of the PML absorbing boundaries, in each 
direction 20 Yee cells of free space padding were placed 

between the PML boundary and the conducting materials. 
The Gauss waveform was used to sweep frequency to 
determine the proper capacitance value for each volume coil 
working at 298.2 MHz, and the stop criteria were that the 
calculation converged to –30 dB. Then, after obtaining the 
capacitance, the sinusoid waveform was used to calculate 
the RF field distributions and the stop criteria were set as 
the calculation converged to –30 dB.

To demonstrate the parallel imaging performance of the 
proposed 3-element volume coil array, the g-factor maps 
at different acceleration rates were calculated and plotted 
based on the RF field distribution calculated from the 
FDTD simulation by using the equation below (56):
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where ρ is the index of voxel in the FOV, S is the reduced 
Fourier encoding, ψ is the noise correlation matrix between 
channels. The g-factor is strongly depends on the voxel 
position and is related to the signal to noise ratio (SNR):
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where R is the acceleration rate, showing that the SNR 
of the accelerated image is inversely proportional to the 
g-factor.

Results

The simulated B1 field distribution is shown in Figure 2. 
The 1st row is the results of the conventional birdcage; the 
2nd row is the results of the transverse birdcage coil, while 
the 3rd row is the helix birdcage coil. The left column results 
are the B1 field distribution of each coil when combined 
together as a birdcage coil array, while the right column 
results are the B1 distribution of each individual coil. It is 
clearly shown that, the B1 field distribution of each birdcage 
coil within the volume coil is almost the same as that 
of the individual coil, demonstrating excellent isolation 
between the three channels. The Blue arrows in the figures 
denote the direction of the magnetic field flux density. In a 
conventional birdcage coil, the B1 direction are along one 
direction within the whole coil; in a transverse birdcage 
coil, the B1 direction of the two half is opposed to each 
other; while in the helix birdcage coil, the B1 direction in 
one slice is the same, but along longitudinal direction the B1 
direction varies from 0° to 360°, therefore its net magnetic 
flux is zero. Thus the flux from one coil to the others is 
theoretically zero, leading to excellent decoupling between 

Figure 1 The 3-channel volume coil array consists of 3 different 
birdcage coils: (A) Conventional birdcage coil (outer); (B) 
Transverse Birdcage coil (middle); and (C) Helix birdcage coil 
(inner); (D) The volume coil array.
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each pair of birdcage coils.
Figure 3 shows the sensitivity maps and phase maps on 

transverse plane of the three volume coil elements when 
fed individually. This transverse plane is the central slice. 
Each element shows different B1 distribution, leading to 
different sensitivity maps which can be used for parallel 
imaging. Figure 4 shows the g-factor maps for 1D SENSE 
reconstruction at different acceleration rates: R =1.2, 1.5, 1.7, 
2.0, 2.3 and 2.5. The acceleration rate and the corresponding 

average g-factor are shown on the top of each g-map. It is 
demonstrated that with the increase of the acceleration the 
average g-factor increases (Figure 5). At acceleration rate of 
2, the g-factor is around 1.5, which is practically good for 
performing parallel imaging for this 3-element coil array.

Discussion and conclusions

In this work, a novel volume coil array design using 
different types of birdcage coils is proposed for MR 
imaging. The resonant elements of this volume coil array 
are a conventional birdcage coil, a transverse birdcage 
coil and a helix birdcage coil. The field behavior and the 
parallel imaging performance of the volume coil array 
have been investigated using numerical simulations and 
SENSE parallel imaging algorithm. The studies verify 
the theoretical expectation on electromagnetic decoupling 
performance of these birdcage coil elements, demonstrating 

Figure 2 Left column, B1 pattern of each volume coil when put 
in the 3-channel birdcage coil array; Right column, B1 pattern 
of each individual volume coil when stand alone. 1st row, The B1 
pattern of the conventional birdcage coil; 2nd row, B1 pattern of the 
transverse birdcage coil; 3rd row, B1 pattern of the helix birdcage 
coil. The B1 pattern of the birdcage coil in the array is the same 
as that of an individual coil with same type, demonstrating the 
excellent decoupling performance between the 3 birdcage coils 
within the 3-channel birdcage coil array. The blue arrow denotes 
the magnetic flux direction in the birdcage coils. The green arrows 
in the Helix birdcage coil denote that the magnetic flux direction 
in transverse plane are identical, but varies along the longitudinal 
axis, therefore the net flux is zero.

Figure 3 The transverse sensitivity maps of each array element at 
the central slice: (A) Conventional birdcage coil; (B) Transverse 
birdcage coil; (C) Helix birdcage coil. The phase maps of the B1 
field of each array element: (D) Conventional birdcage coil; (E) 
Transverse birdcage coil; (F) Helix birdcage coil.
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the feasibility of this volume coil array design technique. 
From the results it can be seen that the three birdcage coils 
are deeply decoupled from each other due to their unique 
magnetic flux directions resulting in the net magnetic flux 
cancellation in both the transverse birdcage coil and the 
helix birdcage coil. In this design method with intrinsic 
decoupling feature, there is no dedicated decoupling 
circuits needed, making the volume coil array design simple 
and practical. Each element of a volume coil array has 
bigger imaging coverage than that of conventional surface 
coil arrays, which may potentially lead to a better g-factor 
and ultimately improved parallel imaging performance, 

particularly in imaging with large field-of-view (FOV). 
Compared with conventional non-array volume coils, the 
volume coil array is expected to provide increased SNR in 
MR imaging. Typical magnetic field distribution of surface 
coil arrays is not uniform over the FOV, showing strong 
gradient behavior with much higher signal intensity in the 
peripheral area and weak signal in the center region. With 
the volume coil array, more uniform SNR distribution can 
be expected across a large volume. 
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