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Introduction

Debilitating neurodegenerative conditions, such as multiple 
sclerosis, Alzheimer’s and Parkinson’s disease, are often 
presented with the accumulation of metabolic byproducts in 
brain tissues. Recent studies also suggest linkages between 
ocular and cerebral diseases, yet the underlying mechanisms 
remain unclear (1-5). Unlike the rest of the body, the 
central nervous system (CNS) does not comprise lymphatic 
vasculature for metabolic waste removal. Instead, several 
hypotheses have been proposed that rely on the complex 
but highly regulated clearance mechanisms responsible for 
an adequate neuronal environment and fluid homeostasis. 
Understanding the mechanisms of clearance systems in 
the eye and the brain can help exploit fluid transport and 
potentially offer new targets for therapy to the visual system 
and beyond. In this editorial, we describe and criticize how 
quantitative imaging can play a role in evaluating different 
models of clearance systems.

Models of the clearance systems in the eye and 
the brain

Essential components for biofluid transport in the CNS

Nutrients and waste products in the brain can be 
transported through three major fluid compartments: 
cerebrospinal fluid (CSF) within the subarachnoid space 
(SAS), interstitial fluid (ISF) within the brain parenchyma, 
and blood within cerebral vessels. The CSF, produced by 

choroid plexus, plays a major role in CNS nutrient transport 
and clearance of waste products, including amyloid 
plaques and hyperphosphorylated τ-proteins. Failure of 
such transport and clearance is thought to lead to waste 
accumulation and toxicity in several neurodegenerative 
diseases (6-8). The ISF surrounds neurons and glial cells, 
and takes part in collecting cellular waste products. Blood 
circulates through cerebral blood vessels. These vessels 
penetrate the pia mater in the innermost membrane around 
the brain but remain separate from the brain parenchyma 
by the glia limitans. The glia limitans are membranes 
composed of astrocytic endfeets enveloping cerebral vessels. 
Exchanges between these three components are essential for 
brain waste clearance and are the subject of active research.

Within the eye, the aqueous humor is secreted into the 
posterior chamber by non-pigmented ciliary epithelial 
cells (9). It resembles CSF surrounding the brain and optic 
nerves with comparable physiologic pressures, production, 
and drainage dynamics. Its passage through the pupil 
into the anterior chamber requires downstream outflow 
mechanisms—the trabecular meshwork and uveoscleral 
pathways—to maintain optimum intraocular pressure. 
The corneoscleral and juxtacanalicular tissue layers of 
the trabecular meshwork drain aqueous humor into the 
Schlemm’s canal, providing access to the episcleral venous 
system. In the uveoscleral pathway, aqueous humor flows 
through the interstitial trabeculae of the ciliary bodies and 
enters the suprachoroidal space and the retinal and optic 
nerve parenchyma (10).
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Major models for clearance systems in the CNS

To date, three major models have been hypothesized for 
the waste clearance system in the brain. These include the 
glymphatic system (6), the intramural periarterial drainage 
(IPAD) (11), and the meningeal lymphatics (12,13). Figure 1  
illustrates each model and how they may function and 
interact. In brief, the perivascular space surrounding the 
cerebral vessels is continuous with the SAS within the 
glia limitans, facilitating CSF and ISF exchange. As CSF 
circulates within the ventricles and SAS, it traverses the 
arteriolar glia limitans via aquaporin-4 (AQP4) channels 
concentrated on the astrocytic endfeet. In the brain 
parenchyma, debris and metabolic waste can be transported 
from the ISF via convective flow into the paravenous space. 
The function of this glia-dependent perivascular network 
suggests that the paravenous space acts as the penultimate 
reservoir for drainage into lymphatic-like vessels, hence the 
term glymphatic (6). Evidence indicates that flow within 
this system is driven by arterial pulsation, respiration, 
gentle vasomotion, and the CSF pressure gradient between 
the SAS and the para-arterial space (14). An alternative 
IPAD hypothesis proposes that ISF is cleared through the 
basement membranes of capillaries and vascular smooth 
muscle cells in the tunica media of cerebral arterioles 
(11,15). The drainage of ISF in the deep brain may also be 
controlled by the integrity of myelination (16).

Outside of the brain parenchyma, recent evidence 
reveals the existence of lymphatic vessels in the meningeal 
compartment along the dorsal and basal portions of the skull 
(12,13). The basal meningeal lymphatic vessels seem more 
involved with CSF/ISF clearance than dorsal meningeal 
lymphatic vessels and contain lymphatic valves, zipper-
like junctions, and characteristics of both capillary and 
collecting lymphatic vessels. These vessels are close to the 
SAS that contains a loose intervening arachnoid barrier (13).  
Hyperspectral fluorescence imaging also demonstrated the 
flow of quantum dot tracers from the cisterna magna to the 
submandibular lymph nodes (17).

The eye and the brain are connected by the optic nerve. 
It was recently found that the extravascular space of the 
extraocular visual pathway directly communicates with the 
SAS in humans (18), while CSF may enter the optic nerve 
via a glymphatic pathway (19). Within the eyeball, recent 
findings also suggest the possibility of an “ocular glymphatic 
system”. In the inner nuclear layer of the retina, the retinal 
glial cells called the Müller cells express AQP4 and, like 
cerebral astrocytes, may be instrumental in maintaining 

such retinal fluid homeostasis (20). Impaired ocular drainage 
in multiple sclerosis manifests as an increase in the volume 
of inner nuclear layer, suggestive of the clinical relevance of 
this clearance system (20). Apart from glymphatic system, 
lymphatic drainage from the eye was also observed (9). 
Fluorescence imaging following injection of quantum dots 
into the anterior chamber shows afferent pathways into the 
submandibular lymph nodes in the ipsilateral neck region 
(21,22). Furthermore, these studies have shown that ocular 
lymphatic drainage increases following administration of 
latanoprost which is a prostaglandin F2α analog (23).

Imaging techniques for monitoring the clearance 
systems in the eye and the brain

The mechanisms involved in waste clearance from the 
eye and brain remain a matter of debate. Development 
of quantitative imaging techniques can offer an objective 
measure to verify the properties of the proposed models. 
Table 1 summarizes recent protocols for imaging the 
clearance systems in the brains and the eyes of both 
humans and experimental animal models. In general, 
most imaging studies of the clearance system involve 
administrations of exogenous tracers such as fluorescent 
nanospheres, quantum dots and radio-labeled human 
serum albumin (HSA). Such tracers of various molecular 
weights and ligand properties allow for visualization and 
characterization of CSF (6-8,12) and aqueous humor 
dynamics and drainages (22,36). Small-sized tracers can 
move into the interstitium in the brain, or into the anterior 
chamber via the blood-aqueous barrier, whereas large-sized 
tracers often remain confined to paravascular spaces after 
intracisternal injection, or to the ocular bloodstream after 
systemic administration (6,7,36,37). Ex vivo approaches 
such as brain slice fluorescence imaging allow histological 
verification to depict precisely how and where tracers 
reach and accumulate by examining the specific types of 
nearby anatomical structures at high spatial resolution (19).  
However, these experiments are limited to a single time 
point per subject and are susceptible to biovariability 
between individuals when testing time- and dose-dependent 
effects (37). Therefore, non-invasive techniques are being 
developed to allow longitudinal monitoring of the dynamics 
of the clearance systems. Recently, photoacoustic imaging 
has successfully mapped and quantified lymphatic drainage 
from the eye to neck lymph nodes by leveraging the high 
contrast of optical imaging and precise spatial resolution 
of ultrasound in detecting near-infrared nanoparticles (35). 
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Figure 1 Schematic of major clearance systems in (A,B,C,F) the brain and (D,E,F) the eye. (A,B,C) are representations of the IPAD and 
glymphatic pathways; (A) is a cross-section of an arteriole and represents CSF flow (cyan arrows) from the SAS into the peri-arterial space, 
as well as ISF flow (green arrows) through the smooth muscle basement membranes; (B) is a cross-section of an arteriole transitioning into a 
capillary, where CSF exits the peri-arterial space via AQP4 water channels (purple) located on the astrocytic endfeet before mixing with ISF 
(cyan green arrow) and entering the smooth muscle basement membranes; (C) is a coronal cross-section through the head and represents 
the glymphatic pathway, dorsal mLVs, and CSF flow through an AG. CSF flows from the SAS into peri-arterial spaces before flowing into 
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the brain parenchyma via AQP4 channels, mixing with ISF, and then entering the perivenous space for drainage via a convective flow. Fluid 
from the SAS can then drain into the mLVs (green openings) surrounding the SSS; (D) represents a cross-section of the anterior chamber of 
the eye. Cyan arrows represent production and flow of aqueous humor from the ciliary body. Red arrow represents the trabecular meshwork 
pathway where aqueous humor flows into the episcleral vein by passing through the Schlemm’s canal (blue opening). Green arrow represents 
the uveoscleral pathway where aqueous humor flows through the interstitial trabeculae of the ciliary bodies and enters the suprachoroidal 
space; (E) represents a cross-section of the optic nerve head. Müller cells within the retina, which share similar functions to astrocytes in 
the brain, are represented in dark green, with appendages that wrap around retinal capillaries (red dots), constituting part of the blood-
retinal barrier. The broad stripe behind the Müller cells represents the INL. The optic nerve is surrounded by SAS through which CSF 
flows into the optic nerve; (F) is a diagram of CSF flow within the SAS, originating from the choroid plexus (orange) within the ventricles, as 
well as dorsal and basal mLVs. These mLVs travelling alongside the TS and SS, exiting out of the jugular foramen with the internal jugular 
vein, and draining into the deep cervical lymph nodes. Preauricular [1], submandibular [2], superficial cervical [3], deep cervical [4], and 
supraclavicular [5] lymph nodes are illustrated. IPAD, intramural periarterial drainage; CSF, cerebrospinal fluid; SAS, subarachnoid space; 
ISF, interstitial fluid; AQP4, aquaporin-4; mLVs, meningeal lymphatic vessels; AG, arachnoid granulation; SSS, superior sagittal sinus; INL, 
inner nuclear layer; TS, transverse sinuses; SS, sigmoid sinuses.

Hyperspectral fluorescence imaging can track the posterior 
brain metabolic clearance into dural sinuses associated with 
lymphatic vessels, as well as the flow of quantum dot tracers 
from the cisterna magna to the submandibular lymph nodes 
over time (38). These methods also help characterize waste 
clearance mechanisms in the eye (21,23).

Although the above tracer-tracking techniques can 
produce detailed images of CSF and aqueous humor flows 
in vivo, such images are often restricted to the surfaces of 
the brain, ocular and body tissues due to limited penetration 
depth for optical and ultrasound imaging. The majority 
of their use is also restricted to animal models due to the 
safety of exogenous materials, and surgical requirements 
such as invasive injection procedures or the need of a 
cranial window for a clear optical axis in case of two-photon 
microscopy. There exists a need of a non-invasive imaging 
modality that allows translational research of the clearance 
systems between humans and experimental animal models. 
Magnetic resonance imaging (MRI) is non-invasive with no 
depth limitation and may serve this purpose. MRI exploits 
the magnetic properties of water in biological tissues and 
allows dynamic monitoring of the clearance systems using 
paramagnetic contrast agents. For example, gadolinium-
based contrast agents (GBCAs) are passive contrast agents 
that enhance the T1-weighted MRI signal of CSF following 
intrathecal or intravenous administration. GBCAs escape 
the bloodstream into the SAS (39) and their interaction 
with brain parenchyma can be mediated by the glymphatic 
system (40-42). GBCAs can also mimic aqueous humor 
components entering the anterior chamber of the eye via 
the blood-aqueous barrier (36,43). Their pharmacokinetics 
varies with the choice of contrast agent (i.e., linear or 

macrocyclic) and heavily depends on renal function for 
systemic elimination. The contrast selection may depend 
on the structure of interest; while macrocyclic GBCAs 
are more stable, linear GBCAs tend to accumulate in the 
dentate nucleus and globus pallidus after intravenous 
administration (44) and in the basal ganglia after intrathecal 
administration (40). These studies also demonstrated that 
some contrast is transported from the venous perivascular 
space into the lymphatic system.

Animal  model  exper iments  wi th  GBCAs have 
demonstrated the capacity of MRI to visualize glymphatic 
function (45). Comparisons between intrathecal infusions of 
Gd-DTPA (938 kDa) and GadoSpin (200 kDa) confirmed 
the fluid transport into paravascular spaces and the size-
dependent CSF-ISF exchange typical of glymphatic 
transport (37). Additionally, AQP4 inhibition reduced 
clearance after intrathecal infusion of GBCAs, suggesting 
the dependence of contrast clearance on glymphatics and 
that MRI is a valid method for glymphatic functional 
imaging (42). While Gd-DTPA is recently discontinued in 
the US, Gd-DOTA may offer an alternative to glymphatic 
imaging with no apparent differences in penetration and 
distribution into the CSF of healthy rats (46). Reports 
on human intrathecal injection suggest the feasibility of 
this approach in clinical settings, but safety concerns do 
remain (47). Recent studies showed abnormally sustained 
enhancement of T1-weighted signal in brain parenchyma 
secondary to reduced rates of gadobutrol clearance from the 
SAS and reduced glymphatic function in patients treated for 
idiopathic normal pressure hydrocephalus (48).

Apart from exogenous tracers, non-invasive MRI 
of clearance systems via endogenous contrasts is also 
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emerging. Several studies have utilized diffusion-weighted 
MRI techniques for the evaluation of the glymphatic 
system by detecting intrinsic water movement along the 
perivascular space (29,47). Research on neurodegenerative 
diseases has shown significant correlations between mental 
impairment scores and the perivascular space diffusivity 
index that is derived from diffusivity patterns in brain 
projection fibers, association fibers, and the perivascular 
space (29). Phase-contrast evaluation and magnetization 
with inversion pulses are also powerful MRI methods for 
visualizing flow within the CSF space without exogenous 
material administration (47).

Quantitation of the clearance systems in the eye 
and the brain

Quantification of the complete CNS waste clearance 
system remains challenging partly due to limitations 
in tracer choices for full eye or brain in vivo research, 
and in the resolution and specificity of non-invasive 
imaging techniques. However, indirect measurements 
in distal locations, synchronization with physiological 
monitoring and biophysical modeling may help improve 
the understanding of the relative contributions of individual 
components to the clearance systems. For example, upon 
intraocular injection of radioactive tracers, we can quantify 
the clearance in the trabecular meshwork and uveoscleral 
pathway separately by measuring the time progression 
of total radioactivity in the plasma and lymphatic tissues, 
respectively using a gamma counter (49). Quantification of 
CSF flow can be accomplished with fluorescent tracers and 
microspheres infused into the cisterna magna of mice and 
visualized by two-photon microscopy, while simultaneously 
measuring pulse and respiration. Microsphere velocity 
measurements, electrocardiograms, and spectral analyses 
demonstrate that CSF flow more closely resembles the 
cardiac cycle than the respiratory cycle, suggesting that the 
primary driver of CSF flow is perivascular pumping (14). 
The synchronization of diffusion-weighted MRI acquisition 
with electrocardiogram also allows for the characterization 
of the effect of arterial pulsatility on the perivascular space 
and the surrounding fluid movement in terms of pseudo-
diffusivity indices (50).

In terms of biophysical modeling, a two-compartment 
pharmacokinetic model for GBCA-based glymphatic 
transport has been tested in rats with severe disruption 
in micro- and macro-vasculature induced by diabetes  
mell itus (50).  The contrast  concentration in two 

compartments (free and bound fractions) is represented 
by a system of differential equations describing contrast 
dynamics among the arterial perivasculature and brain 
parenchyma. The model solution has a biexponential form 
whose respective fractions and time constants allow the 
estimation of contrast retention and loss to the perivascular 
space. This approach has also been used to demonstrate the 
dependence of glymphatic clearance on corporal position. 
Experiments showed reduced overall clearance in rats 
scanned in a prone position compared to supine or right 
lateral decubitus positions (51). These results were verified 
with fluorescence and radiolabeled tracer imaging, showing 
comparatively greater CSF influx in the supine and right 
lateral decubitus positions.

The spontaneous rhythmic oscillations of vascular 
tone in the beds of various tissues, including the cerebral 
tissues, known as vasomotion, are central to the IPAD 
model for brain waste clearance. This model encompasses 
a complex system of equations, representing vasomotion-
induced intramural periarterial flow through the poroelastic 
basement membrane, coupled with the elastic response of 
the middle cerebral artery in the arterial wall model. This 
model has been proposed to explain the mechanism of 
IPAD pathways through the basement membranes (15).

Challenges in imaging the clearance systems of 
the eye and the brain

Apart from the physical factors from imaging techniques 
in probing the mechanisms of clearance systems (30), CNS 
waste clearance appears to be affected by a number of 
physiological factors such as wakefulness (52,53), anesthesia 
regimes (25,53,54), exercise (55), age (7), tracer delivery 
(7,56), and posture (51,57). CSF tracer influx appears to be 
suppressed in awake subjects (58), increased after voluntary 
exercise (55), and increased or decreased in sedated subjects 
depending on the anesthesia regimes (59). In particular, 
at a high anesthetic dose such as 3% isoflurane, general 
anesthesia may have a negative impact on the intracranial 
CSF circulation (25,53). This occurs not simply by inducing 
unconsciousness but also by additional mechanisms 
including repression of norepinephrine release (54). To 
minimize the effects of anesthesia on solute transport 
during imaging, anesthesia with dexmedetomidine and low-
dose isoflurane has been proposed if awake imaging is not 
feasible (54).

CNS waste clearance research often requires surgical 
procedures for the administration of tracers prior to 
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image acquisition. In animal studies, imaging of lymphatic 
drainage in the eye typically relies on intracameral, 
intravitreal, or subretinal contrast injection. For imaging 
brain waste clearance, intrathecal catheterization is 
desirable over intracranial administration since it eliminates 
the need for a craniotomy (60). SAS catheterization via 
the atlanto-occipital membrane allows catheter insertion 
into the cisterna magna or down to the lower levels of the 
lumbar spinal cord of rats (61,62). Longitudinal studies in 
rodents typically rely on lumbar intrathecal catheterization 
for the infusion of tracers into the CSF (62,63). MRI 
studies of human glymphatic function also rely on lumbar 
puncture and intrathecal administration of CSF tracers to 
ensure brain-wide CSF contrast enhancement and clearance 
(27,28). Intracerebroventricular tracer injection can also 
be used, yet cautions should be noted when performing 
invasive procedures for glymphatic studies, as it is reported 
that intrastriatal injections suppress glymphatic function (7).

Future perspectives

Despite several advances, questions remain regarding the 
properties of cerebral and ocular clearance systems and 
their mechanisms. For example, AQP4 channels are water-
only channels whereas CSF has components much larger 
in number and size that cannot effectively pass through 
AQP4 channels. Explorations based on this premise may 
uncover new substances, transporters, channels, pumps 
and mechanisms/routes. Better imaging techniques to 
determine the physiological integrity of CSF and aqueous 
compartments may also help identify vulnerable individuals 
with diseases like dementia (64) and glaucoma (26). Delayed 
tracer clearance from brain parenchyma suggests that 
contrast-enhanced imaging could potentially be employed 
to diagnose and examine neurodegenerative diseases in 
humans and preclinical models (8,27,47,65). In the future, 
development of a quantitative imaging model system that 
guides how to manipulate solute transport in appropriate 
experimental animal models is imperative to facilitate waste 
clearance and alleviate disease severity (57,66-70). Although 
most of the current surgical procedures and contrast agents 
for clearance system studies cannot be used in humans 
considering safety and FDA approval, quantitative GBCA-
enhanced MRI has recently been employed to study 
cerebral and ocular clearance in certain human populations 
(18,27,47,71,72), whereas diffusion-weighted MRI and 
phase-contrast MRI could provide information of solute 
transport without the need of exogenous contrast agents, 

which could be a major direction for future human imaging 
research (47). Finally, a unifying model is required to 
account for the various findings that have been reported 
so far (11,73,74). Understanding the clearance systems 
may provide insight into the development of neurological 
pathologies, ultimately paving the way for neurotherapeutics.
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