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Introduction

Debilitating neurodegenerative conditions, such as multiple
sclerosis, Alzheimer’s and Parkinson’s disease, are often
presented with the accumulation of metabolic byproducts in
brain tissues. Recent studies also suggest linkages between
ocular and cerebral diseases, yet the underlying mechanisms
remain unclear (1-5). Unlike the rest of the body, the
central nervous system (CNS) does not comprise lymphatic
vasculature for metabolic waste removal. Instead, several
hypotheses have been proposed that rely on the complex
but highly regulated clearance mechanisms responsible for
an adequate neuronal environment and fluid homeostasis.
Understanding the mechanisms of clearance systems in
the eye and the brain can help exploit fluid transport and
potentially offer new targets for therapy to the visual system
and beyond. In this editorial, we describe and criticize how
quantitative imaging can play a role in evaluating different
models of clearance systems.

Models of the clearance systems in the eye and
the brain

Essential components for biofluid transport in the CNS

Nutrients and waste products in the brain can be
transported through three major fluid compartments:
cerebrospinal fluid (CSF) within the subarachnoid space
(SAS), interstitial fluid (ISF) within the brain parenchyma,
and blood within cerebral vessels. The CSE, produced by
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choroid plexus, plays a major role in CNS nutrient transport
and clearance of waste products, including amyloid
plaques and hyperphosphorylated t-proteins. Failure of
such transport and clearance is thought to lead to waste
accumulation and toxicity in several neurodegenerative
diseases (6-8). The ISF surrounds neurons and glial cells,
and takes part in collecting cellular waste products. Blood
circulates through cerebral blood vessels. These vessels
penetrate the pia mater in the innermost membrane around
the brain but remain separate from the brain parenchyma
by the glia limitans. The glia limitans are membranes
composed of astrocytic endfeets enveloping cerebral vessels.
Exchanges between these three components are essential for
brain waste clearance and are the subject of active research.

Within the eye, the aqueous humor is secreted into the
posterior chamber by non-pigmented ciliary epithelial
cells (9). It resembles CSF surrounding the brain and optic
nerves with comparable physiologic pressures, production,
and drainage dynamics. Its passage through the pupil
into the anterior chamber requires downstream outflow
mechanisms—the trabecular meshwork and uveoscleral
pathways—to maintain optimum intraocular pressure.
The corneoscleral and juxtacanalicular tissue layers of
the trabecular meshwork drain aqueous humor into the
Schlemm’s canal, providing access to the episcleral venous
system. In the uveoscleral pathway, aqueous humor flows
through the interstitial trabeculae of the ciliary bodies and
enters the suprachoroidal space and the retinal and optic
nerve parenchyma (10).
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Major models for clearance systems in the CNS

To date, three major models have been hypothesized for
the waste clearance system in the brain. These include the
glymphatic system (6), the intramural periarterial drainage
(IPAD) (11), and the meningeal lymphatics (12,13). Figure 1
illustrates each model and how they may function and
interact. In brief, the perivascular space surrounding the
cerebral vessels is continuous with the SAS within the
glia limitans, facilitating CSF and ISF exchange. As CSF
circulates within the ventricles and SAS, it traverses the
arteriolar glia limitans via aquaporin-4 (AQP4) channels
concentrated on the astrocytic endfeet. In the brain
parenchyma, debris and metabolic waste can be transported
from the ISF via convective flow into the paravenous space.
The function of this glia-dependent perivascular network
suggests that the paravenous space acts as the penultimate
reservoir for drainage into lymphatic-like vessels, hence the
term glymphatic (6). Evidence indicates that flow within
this system is driven by arterial pulsation, respiration,
gentle vasomotion, and the CSF pressure gradient between
the SAS and the para-arterial space (14). An alternative
IPAD hypothesis proposes that ISF is cleared through the
basement membranes of capillaries and vascular smooth
muscle cells in the tunica media of cerebral arterioles
(11,15). The drainage of ISF in the deep brain may also be
controlled by the integrity of myelination (16).

Outside of the brain parenchyma, recent evidence
reveals the existence of lymphatic vessels in the meningeal
compartment along the dorsal and basal portions of the skull
(12,13). The basal meningeal lymphatic vessels seem more
involved with CSF/ISF clearance than dorsal meningeal
lymphatic vessels and contain lymphatic valves, zipper-
like junctions, and characteristics of both capillary and
collecting lymphatic vessels. These vessels are close to the
SAS that contains a loose intervening arachnoid barrier (13).
Hyperspectral fluorescence imaging also demonstrated the
flow of quantum dot tracers from the cisterna magna to the
submandibular lymph nodes (17).

The eye and the brain are connected by the optic nerve.
It was recently found that the extravascular space of the
extraocular visual pathway directly communicates with the
SAS in humans (18), while CSF may enter the optic nerve
via a glymphatic pathway (19). Within the eyeball, recent
findings also suggest the possibility of an “ocular glymphatic
system”. In the inner nuclear layer of the retina, the retinal
glial cells called the Miiller cells express AQP4 and, like

cerebral astrocytes, may be instrumental in maintaining
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such retinal fluid homeostasis (20). Impaired ocular drainage
in multiple sclerosis manifests as an increase in the volume
of inner nuclear layer, suggestive of the clinical relevance of
this clearance system (20). Apart from glymphatic system,
lymphatic drainage from the eye was also observed (9).
Fluorescence imaging following injection of quantum dots
into the anterior chamber shows afferent pathways into the
submandibular lymph nodes in the ipsilateral neck region
(21,22). Furthermore, these studies have shown that ocular
lymphatic drainage increases following administration of
latanoprost which is a prostaglandin F2o analog (23).

Imaging techniques for monitoring the clearance
systems in the eye and the brain

The mechanisms involved in waste clearance from the
eye and brain remain a matter of debate. Development
of quantitative imaging techniques can offer an objective
measure to verify the properties of the proposed models.
Table 1 summarizes recent protocols for imaging the
clearance systems in the brains and the eyes of both
humans and experimental animal models. In general,
most imaging studies of the clearance system involve
administrations of exogenous tracers such as fluorescent
nanospheres, quantum dots and radio-labeled human
serum albumin (HSA). Such tracers of various molecular
weights and ligand properties allow for visualization and
characterization of CSF (6-8,12) and aqueous humor
dynamics and drainages (22,36). Small-sized tracers can
move into the interstitium in the brain, or into the anterior
chamber via the blood-aqueous barrier, whereas large-sized
tracers often remain confined to paravascular spaces after
intracisternal injection, or to the ocular bloodstream after
systemic administration (6,7,36,37). Ex vivo approaches
such as brain slice fluorescence imaging allow histological
verification to depict precisely how and where tracers
reach and accumulate by examining the specific types of
nearby anatomical structures at high spatial resolution (19).
However, these experiments are limited to a single time
point per subject and are susceptible to biovariability
between individuals when testing time- and dose-dependent
effects (37). Therefore, non-invasive techniques are being
developed to allow longitudinal monitoring of the dynamics
of the clearance systems. Recently, photoacoustic imaging
has successfully mapped and quantified lymphatic drainage
from the eye to neck lymph nodes by leveraging the high
contrast of optical imaging and precise spatial resolution
of ultrasound in detecting near-infrared nanoparticles (35).
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Figure 1 Schematic of major clearance systems in (A,B,C,F) the brain and (D,E,F) the eye. (A,B,C) are representations of the IPAD and
glymphatic pathways; (A) is a cross-section of an arteriole and represents CSF flow (cyan arrows) from the SAS into the peri-arterial space,
as well as ISF flow (green arrows) through the smooth muscle basement membranes; (B) is a cross-section of an arteriole transitioning into a
capillary, where CSF exits the peri-arterial space via AQP4 water channels (purple) located on the astrocytic endfeet before mixing with ISF
(cyan green arrow) and entering the smooth muscle basement membranes; (C) is a coronal cross-section through the head and represents
the glymphatic pathway, dorsal mLVs, and CSF flow through an AG. CSF flows from the SAS into peri-arterial spaces before flowing into
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the brain parenchyma via AQP4 channels, mixing with ISE, and then entering the perivenous space for drainage via a convective flow. Fluid
from the SAS can then drain into the mLVs (green openings) surrounding the SSS; (D) represents a cross-section of the anterior chamber of
the eye. Cyan arrows represent production and flow of aqueous humor from the ciliary body. Red arrow represents the trabecular meshwork
pathway where aqueous humor flows into the episcleral vein by passing through the Schlemm’s canal (blue opening). Green arrow represents
the uveoscleral pathway where aqueous humor flows through the interstitial trabeculae of the ciliary bodies and enters the suprachoroidal
space; (E) represents a cross-section of the optic nerve head. Miiller cells within the retina, which share similar functions to astrocytes in
the brain, are represented in dark green, with appendages that wrap around retinal capillaries (red dots), constituting part of the blood-
retinal barrier. The broad stripe behind the Miiller cells represents the INL. The optic nerve is surrounded by SAS through which CSF
flows into the optic nerve; (F) is a diagram of CSF flow within the SAS, originating from the choroid plexus (orange) within the ventricles, as
well as dorsal and basal mLVs. These mLVs travelling alongside the TS and SS, exiting out of the jugular foramen with the internal jugular
vein, and draining into the deep cervical lymph nodes. Preauricular [1], submandibular [2], superficial cervical [3], deep cervical [4], and
supraclavicular [5] lymph nodes are illustrated. IPAD, intramural periarterial drainage; CSE, cerebrospinal fluid; SAS, subarachnoid space;
ISE interstitial fluid; AQP4, aquaporin-4; mLVs, meningeal lymphatic vessels; AG, arachnoid granulation; SSS, superior sagittal sinus; INL,

inner nuclear layer; T'S, transverse sinuses; SS, sigmoid sinuses.

Hyperspectral fluorescence imaging can track the posterior
brain metabolic clearance into dural sinuses associated with
lymphatic vessels, as well as the flow of quantum dot tracers
from the cisterna magna to the submandibular lymph nodes
over time (38). These methods also help characterize waste
clearance mechanisms in the eye (21,23).

Although the above tracer-tracking techniques can
produce detailed images of CSF and aqueous humor flows
in vivo, such images are often restricted to the surfaces of
the brain, ocular and body tissues due to limited penetration
depth for optical and ultrasound imaging. The majority
of their use is also restricted to animal models due to the
safety of exogenous materials, and surgical requirements
such as invasive injection procedures or the need of a
cranial window for a clear optical axis in case of two-photon
microscopy. There exists a need of a non-invasive imaging
modality that allows translational research of the clearance
systems between humans and experimental animal models.
Magnetic resonance imaging (MRI) is non-invasive with no
depth limitation and may serve this purpose. MRI exploits
the magnetic properties of water in biological tissues and
allows dynamic monitoring of the clearance systems using
paramagnetic contrast agents. For example, gadolinium-
based contrast agents (GBCAs) are passive contrast agents
that enhance the T1-weighted MRI signal of CSF following
intrathecal or intravenous administration. GBCAs escape
the bloodstream into the SAS (39) and their interaction
with brain parenchyma can be mediated by the glymphatic
system (40-42). GBCAs can also mimic aqueous humor
components entering the anterior chamber of the eye via
the blood-aqueous barrier (36,43). Their pharmacokinetics
varies with the choice of contrast agent (i.e., linear or
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macrocyclic) and heavily depends on renal function for
systemic elimination. The contrast selection may depend
on the structure of interest; while macrocyclic GBCAs
are more stable, linear GBCAs tend to accumulate in the
dentate nucleus and globus pallidus after intravenous
administration (44) and in the basal ganglia after intrathecal
administration (40). These studies also demonstrated that
some contrast is transported from the venous perivascular
space into the lymphatic system.

Animal model experiments with GBCAs have
demonstrated the capacity of MRI to visualize glymphatic
function (45). Comparisons between intrathecal infusions of
Gd-DTPA (938 kDa) and GadoSpin (200 kDa) confirmed
the fluid transport into paravascular spaces and the size-
dependent CSF-ISF exchange typical of glymphatic
transport (37). Additionally, AQP4 inhibition reduced
clearance after intrathecal infusion of GBCAs, suggesting
the dependence of contrast clearance on glymphatics and
that MRI is a valid method for glymphatic functional
imaging (42). While Gd-DTPA is recently discontinued in
the US, Gd-DOTA may offer an alternative to glymphatic
imaging with no apparent differences in penetration and
distribution into the CSF of healthy rats (46). Reports
on human intrathecal injection suggest the feasibility of
this approach in clinical settings, but safety concerns do
remain (47). Recent studies showed abnormally sustained
enhancement of T1-weighted signal in brain parenchyma
secondary to reduced rates of gadobutrol clearance from the
SAS and reduced glymphatic function in patients treated for
idiopathic normal pressure hydrocephalus (48).

Apart from exogenous tracers, non-invasive MRI
of clearance systems via endogenous contrasts is also
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emerging. Several studies have utilized diffusion-weighted
MRI techniques for the evaluation of the glymphatic
system by detecting intrinsic water movement along the
perivascular space (29,47). Research on neurodegenerative
diseases has shown significant correlations between mental
impairment scores and the perivascular space diffusivity
index that is derived from diffusivity patterns in brain
projection fibers, association fibers, and the perivascular
space (29). Phase-contrast evaluation and magnetization
with inversion pulses are also powerful MRI methods for
visualizing flow within the CSF space without exogenous
material administration (47).

Quantitation of the clearance systems in the eye
and the brain

Quantification of the complete CNS waste clearance
system remains challenging partly due to limitations
in tracer choices for full eye or brain iz vive research,
and in the resolution and specificity of non-invasive
imaging techniques. However, indirect measurements
in distal locations, synchronization with physiological
monitoring and biophysical modeling may help improve
the understanding of the relative contributions of individual
components to the clearance systems. For example, upon
intraocular injection of radioactive tracers, we can quantify
the clearance in the trabecular meshwork and uveoscleral
pathway separately by measuring the time progression
of total radioactivity in the plasma and lymphatic tissues,
respectively using a gamma counter (49). Quantification of
CSF flow can be accomplished with fluorescent tracers and
microspheres infused into the cisterna magna of mice and
visualized by two-photon microscopy, while simultaneously
measuring pulse and respiration. Microsphere velocity
measurements, electrocardiograms, and spectral analyses
demonstrate that CSF flow more closely resembles the
cardiac cycle than the respiratory cycle, suggesting that the
primary driver of CSF flow is perivascular pumping (14).
The synchronization of diffusion-weighted MRI acquisition
with electrocardiogram also allows for the characterization
of the effect of arterial pulsatility on the perivascular space
and the surrounding fluid movement in terms of pseudo-
diffusivity indices (50).

In terms of biophysical modeling, a two-compartment
pharmacokinetic model for GBCA-based glymphatic
transport has been tested in rats with severe disruption
in micro- and macro-vasculature induced by diabetes
mellitus (50). The contrast concentration in two

© Quantitative Imaging in Medicine and Surgery. All rights reserved.

compartments (free and bound fractions) is represented
by a system of differential equations describing contrast
dynamics among the arterial perivasculature and brain
parenchyma. The model solution has a biexponential form
whose respective fractions and time constants allow the
estimation of contrast retention and loss to the perivascular
space. This approach has also been used to demonstrate the
dependence of glymphatic clearance on corporal position.
Experiments showed reduced overall clearance in rats
scanned in a prone position compared to supine or right
lateral decubitus positions (51). These results were verified
with fluorescence and radiolabeled tracer imaging, showing
comparatively greater CSF influx in the supine and right
lateral decubitus positions.

The spontaneous rhythmic oscillations of vascular
tone in the beds of various tissues, including the cerebral
tissues, known as vasomotion, are central to the IPAD
model for brain waste clearance. This model encompasses
a complex system of equations, representing vasomotion-
induced intramural periarterial flow through the poroelastic
basement membrane, coupled with the elastic response of
the middle cerebral artery in the arterial wall model. This
model has been proposed to explain the mechanism of
IPAD pathways through the basement membranes (15).

Challenges in imaging the clearance systems of
the eye and the brain

Apart from the physical factors from imaging techniques
in probing the mechanisms of clearance systems (30), CNS
waste clearance appears to be affected by a number of
physiological factors such as wakefulness (52,53), anesthesia
regimes (25,53,54), exercise (55), age (7), tracer delivery
(7,56), and posture (51,57). CSF tracer influx appears to be
suppressed in awake subjects (58), increased after voluntary
exercise (55), and increased or decreased in sedated subjects
depending on the anesthesia regimes (59). In particular,
at a high anesthetic dose such as 3% isoflurane, general
anesthesia may have a negative impact on the intracranial
CSF circulation (25,53). This occurs not simply by inducing
unconsciousness but also by additional mechanisms
including repression of norepinephrine release (54). To
minimize the effects of anesthesia on solute transport
during imaging, anesthesia with dexmedetomidine and low-
dose isoflurane has been proposed if awake imaging is not
feasible (54).

CNS waste clearance research often requires surgical
procedures for the administration of tracers prior to
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image acquisition. In animal studies, imaging of lymphatic
drainage in the eye typically relies on intracameral,
intravitreal, or subretinal contrast injection. For imaging
brain waste clearance, intrathecal catheterization is
desirable over intracranial administration since it eliminates
the need for a craniotomy (60). SAS catheterization via
the atlanto-occipital membrane allows catheter insertion
into the cisterna magna or down to the lower levels of the
lumbar spinal cord of rats (61,62). Longitudinal studies in
rodents typically rely on lumbar intrathecal catheterization
for the infusion of tracers into the CSF (62,63). MRI
studies of human glymphatic function also rely on lumbar
puncture and intrathecal administration of CSF tracers to
ensure brain-wide CSF contrast enhancement and clearance
(27,28). Intracerebroventricular tracer injection can also
be used, yet cautions should be noted when performing
invasive procedures for glymphatic studies, as it is reported
that intrastriatal injections suppress glymphatic function (7).

Future perspectives

Despite several advances, questions remain regarding the
properties of cerebral and ocular clearance systems and
their mechanisms. For example, AQP4 channels are water-
only channels whereas CSF has components much larger
in number and size that cannot effectively pass through
AQP4 channels. Explorations based on this premise may
uncover new substances, transporters, channels, pumps
and mechanisms/routes. Better imaging techniques to
determine the physiological integrity of CSF and aqueous
compartments may also help identify vulnerable individuals
with diseases like dementia (64) and glaucoma (26). Delayed
tracer clearance from brain parenchyma suggests that
contrast-enhanced imaging could potentially be employed
to diagnose and examine neurodegenerative diseases in
humans and preclinical models (8,27,47,65). In the future,
development of a quantitative imaging model system that
guides how to manipulate solute transport in appropriate
experimental animal models is imperative to facilitate waste
clearance and alleviate disease severity (57,66-70). Although
most of the current surgical procedures and contrast agents
for clearance system studies cannot be used in humans
considering safety and FDA approval, quantitative GBCA-
enhanced MRI has recently been employed to study
cerebral and ocular clearance in certain human populations
(18,27,47,71,72), whereas diffusion-weighted MRI and
phase-contrast MRI could provide information of solute
transport without the need of exogenous contrast agents,

© Quantitative Imaging in Medicine and Surgery. All rights reserved.
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which could be a major direction for future human imaging
research (47). Finally, a unifying model is required to
account for the various findings that have been reported
so far (11,73,74). Understanding the clearance systems
may provide insight into the development of neurological
pathologies, ultimately paving the way for neurotherapeutics.
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