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Introduction

There are plenty of technical innovations that were 
regarded in early days as certainly impractical during initial 
usage, yet later proved to become the predominant method 
of choice in certain applications after key improvements of 
the associated equipment or devices. Well known examples 
in the magnetic resonance (MR) imaging literature include 
clinical diffusion-weighted imaging (1) that relies largely on 
the commercialization of single-shot echo-planar imaging 
(EPI) (2) which, in turn, requires high-performance 
gradient coils to reduce artifacts related to off-resonance 
to diagnostically acceptable level (3). Another instance 
is balanced steady-state free precession imaging, whose 
banding artifacts precluded its inclusion in routine clinical 
examination protocols before the advancements of gradient 
coils and shimming technology (4), but nowadays has 
become an essential tool in cardiovascular MR imaging (5).  
The gradient- and spin-echo (GRASE) sequence (6,7) in our 
opinion, although not as obvious as the two aforementioned 
examples, may well be another imaging technique with 
strong potential but was long overlooked.

Principles and properties of the GRASE 
sequence

The pulse sequence diagram of the GRASE sequence is 
schematically shown in Figure 1 (6,7). It consists of multiple 
refocusing radiofrequency (RF) pulses after the excitation 
RF pulse just like the fast spin-echo (FSE) technique (8), 

but with series of gradient-echo readouts in a way similar to 
EPI inserted in the echo spacing interval between successive 
refocusing pulses. Each gradient-echo is preceded by 
appropriate phase encoding gradients (not shown) to be 
filled in the k-space at corresponding locations to form an 
image. Therefore the GRASE sequence can be viewed as a 
hybrid of FSE and EPI.

Originally developed nearly thirty years ago when high-
performance gradient coils were still uncommon in clinical 
whole-body MR imaging systems and hence EPI was a 
luxury, GRASE was proposed as a practically feasible fast 
sequence offering single-shot capability with T2-weighted 
contrast. Compared with EPI, the formation of multiple spin 
echoes in GRASE allows more k-space lines to be sampled 
with each excitation RF pulse. Single-shot GRASE imaging 
within one or two T2 relaxation times was thus possible for 
one two-dimensional (2D) slice, even with conventional 
gradient coils  at a maximal strength of 10 mT/m  
commonly used in the 90s (9).

The hybrid characteristics of GRASE certainly lead to 
the advantages of speeded acquisition from EPI as well as 
reduced sensitivity to off-resonance effects from FSE, yet 
also accompanied by inevitable shortcomings from both 
techniques. Taking single-shot 2D GRASE as an example, 
phase errors induced by field inhomogeneity accumulate 
during the multiple gradient-echo readout as in EPI, and 
refocused at the center of each spin-echo. This, along 
with the transverse relaxation effects, results in periodic 
modulation of the echo signals in the k-space if linear 
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phase encoding is used. Point-spread-function-related 
ghosting artifacts thus appear in the reconstructed image 
along the phase-encoding direction (10). Interestingly, note 
that T2-related amplitude oscillations and off-resonance 
phase modulations are not synchronous with each other. 
Consequently, although one could, for example, reduce 
phase-related ghosts via appropriate shuffling of the echo 
signals by varying the order of phase encoding gradients, 
residual amplitude oscillations are unavoidable (11).  
Variations of the phase encoding schemes to minimize 
artifact, therefore, were once an active topic of investigations 
for GRASE-related imaging techniques (12).

The previous explanations about ghosting artifacts in 
GRASE imaging are for single-shot 2D imaging only. With 
multi-shot GRASE, the above issues could be effectively 
alleviated with proper arrangement of the phase encoding 
order. This is however achieved at the expense of scan time 
penalty, where a long repetition time (TR) is likely needed 
to allow for full T1 recovery. Unfortunately in such a case 
GRASE often compares unfavorably with multi-shot FSE 
which has no phase error problems, as will be seen in a later 
section.

Clinical evaluations of GRASE in early days

The most frequently employed comparison target 
for GRASE was FSE, which had essentially replaced 
conventional spin-echo as the new standard for T2-weighted 
imaging as soon as it appeared in the market. In a majority 

of investigations reported for brain imaging at 1.5 Tesla 
and below, GRASE has been regarded as being inferior 
to FSE on aspects well explained by the aforementioned 
characteristics (13-15). Diminished contrast and lower 
signal-to-noise ratio (SNR) was reported for GRASE 
as compared with FSE (13), leading to inferior lesion 
conspicuity of GRASE (14). Even with reordered phase 
encoding to minimize ghosting artifacts, residual point-
spread-functional blurring still resulted in substantially 
reduced sensitivity in GRASE for detecting small lesions (15). 
GRASE did occasionally show some advantages compared 
with FSE, for instance at depicting lesions with paramagnetic 
susceptibility characteristics like hemorrhage (16). Such a 
property is clearly understandable due to the gradient-echo 
nature of GRASE, which is again accompanied by gradient-
echo pitfalls such as increased chemical shift displacement 
artifacts along the phase encoding direction (17), and the 
advantage may not be applicable at lower field strengths due 
to reduced susceptibility effects (18). To make things worse, 
setting the clinical protocols to include a morphological 
FSE sequence plus a purely gradient-echo-based sequence 
would satisfy the requirements of reliable lesion depiction 
and hemorrhagic sensitivity (19), making GRASE out of the 
routine needs.

For body imaging, similar conclusions of the superiority 
of FSE to GRASE have been documented. In general, the 
overall image quality was regarded as significantly lower 
in GRASE than in FSE (20). Contrast-to-noise ratio for 
GRASE was also reported to compare inferiorly to FSE 

Figure 1 Schematic drawing of the pulse sequence diagram for the GRASE sequence, including the RF pulse, the slice selection gradient, 
and the frequency-encoding gradient channels. A number of refocusing pulses (three in this example) are applied after the excitation pulse to 
generate spin echoes at different TEs, whereas within each echo spacing a series of gradient-echoes (five here) are formed to sample the spin 
echo. Note that phase accumulation from off-resonance effects occurs within each spin echo, whereas signal decaying from T2 relaxation 
causes amplitude modulations across the spin echoes. GRASE, gradient- and spin-echo; RF, refocusing radiofrequency; TE, echo time.
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despite similar ability in tumor delineation (21). Since 
diagnostic accuracy certainly outweighs all other issues in 
clinical routine examinations, the role that can be played 
by GRASE became diminished with the attractive stability 
of image quality that can be brought about by the FSE 
technique.

On the other hand, the battle between GRASE and EPI 
underwent a completely different scenario. Whole-body 
high-performance gradient coils on clinical MR imaging 
systems started to appear in about 1994, making single-
shot EPI a reality. Together with important advantages of 
diffusion-weighted readout exhibiting strong potential in 
the diagnosis of acute ischemic stroke (22,23) and multi-
slice capability free from cross-talk from the refocusing 
RF pulses (24), single-shot EPI soon found its unique 
role in clinical neural examinations, making comparative 
investigations between GRASE and EPI unnecessary.

Unique advantages of GRASE

Despite of the numerous negative reports mentioned in the 
previous section, GRASE does have its unique superiority 
in modern era. Specifically, high-field MR imaging systems 
(3.0 Tesla and above) begin to dominate technical advances 
in major manufacturers, and are more and more popular in 
medical centers around the world due to advantages brought 
about by improved SNR and spectral resolution. The two 
major competitors of GRASE, namely FSE and EPI as 
mentioned previously, have to face their own obstacles at 
high fields. The use of multiple refocusing pulses in FSE 
results in increased RF specific absorption rates (SAR), which 
worsens as the main field gets higher (25). The SAR limits 
the minimum echo spacing in FSE, which in turn lengthens 
the total acquisition time that could hurdle three-dimensional 
(3D) examinations within one breath-hold (26). For EPI on 
the other hand, geometric distortions worsen tremendously 
at high fields because the susceptibility effect scales more 
than linearly with field strength (27). The shortened T2* at 
high fields further places strong demands on fast switching 
gradient coils at high amplitudes. Suitability of GRASE 
imaging at high fields thus emerges (28,29).

3D MR imaging at high fields is a good example where 
the GRASE sequence could exert its unique advantages. 
With 3D imaging, two loops of phase encoding are present. 
Smart reordering of the phase encoding steps allows 
a separation of phase error and T2 modulation in the 
k-space (10), hence permitting appropriate manipulation 
and filtering of the k-space data differently along the two 

phase-encoding directions to minimize artifacts (30). T2-
related blurring can be further reduced using variable flip 
angle for the refocusing pulses (31) in a way to incorporate 
stimulated echo signals into the echo train (32). Along 
with the multiple gradient-echoes that effectively increase 
acquisition efficiency, 3D imaging at reduced scan time 
with stability approaching that of FSE becomes a possibility 
at high field strengths. In the following section, some 
current and foreseeable applications of GRASE imaging are 
described.

Current and potential applications of GRASE 
imaging

Like many other MR imaging sequences, GRASE can be used 
as a signal readout module with image contrast determined 
mainly in the preceding magnetization preparation stage, 
or as a standalone sequence whose diagnostic information 
relies on the evolution of magnetization during the relaxation 
process. In both cases, the unique characteristics of GRASE, 
namely reduced SAR compared with FSE and the better 
immunity to off-resonance than EPI, makes it ideally suited 
at high field strengths.

One area in which many investigators involved in 
technical developments of MR imaging prefer to utilize 3D 
GRASE as the signal readout module is arterial spin labeling 
(ASL) for perfusion imaging with RF-tagged intrinsic tracer. 
ASL is a typical example showing suitability for high-field 
imaging (e.g., 3.0 Tesla), due to the increased SNR as well 
as the lengthened T1 for extended availability of the labeled 
tracer compared with imaging at low fields (e.g., 1.5 Tesla). 
The use of 3D GRASE readout after either continuous (33)  
or pulsed (34) ASL preparation is hence a natural 
consequence seeking for time-efficient spatial encoding to 
study brain perfusion (Figure 2). Technical improvements 
dea l ing  w i th  T2-re l a ted  po in t - spread- func t ion 
blurring, as mentioned before, are documented (35).  
This could become important because for even higher field 
strengths such as 7.0 Tesla, the shortening of T2 makes the 
blurring issue increasingly prominent (36). With shortened 
readout time provided by 3D GRASE, advanced extensions 
of ASL to incorporate multiple post-labeling delays to 
estimate bolus arrival time as in contrast injection studies 
(37,38) or to measure other related parameters such as water 
transfer time (39) have become possible. In fact for ASL in 
the brain, the rapidly increasing utilization of 3D GRASE 
almost makes it a standard readout module. Applications of 
ASL with 3D GRASE to other organs also start to appear in 
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Figure 2 Cerebral blood flow maps obtained using pulsed ASL preparation. The 14 slices shown here were ordered from the inferior to the 
superior slices (from left to right, from top to bottom). With 3D GRASE readout, the entire volume could be acquired within the scan time 
of 2.2 minutes, thus facilitating clinical usage when administration of contrast agent is counter-indicated in patients with kidney dysfunction. 
The greater blood flow in the gray matter than in the white matter was clearly depicted. No point-spread-function-related ghosting or 
blurring artifacts were visually discernible. ASL, arterial spin labeling; 3D, three-dimensional; GRASE, gradient- and spin-echo.

Figure 3 Breath-hold MR cholangiogram acquired at 3.0 Tesla 
using 3D GRASE from one healthy subject. Within a TR of  
262 msec, 9 refocusing pulses were applied with 5 gradient-echoes 
acquired during each echo spacing, resulting in total scan time 
of 13 seconds after parallel imaging acceleration. In addition to 
maximum intensity projection provided in this example, 3D allows 
depth information to be assessed from the original data set. 3D 
readout based on FSE would be hampered by SAR limitation of 
the radiofrequency pulses and the consequent lengthening of scan 
time prohibiting single breath-hold. MR, magnetic resonance; 
3D, three-dimensional; GRASE, gradient- and spin-echo; TR, 
repetition time; FSE, fast spin-echo; SAR, specific absorption rate; 
GB, gallbladder; CBD, common bile duct; CHD, common hepatic 
duct; LHD, left hepatic duct; RHD, right hepatic duct; PD, 
pancreatic duct.

the literature with promising results (40).
Emerging applications of the GRASE sequence are 

certainly not restricted to perfusion with ASL. Images acquired 
from the generic GRASE sequence exhibit T2-weighted 
contrast from the long signal readout (15), which finds 
several clinical usages such as MR cholangiopancreatography 
(MRCP). MRCP is conventionally performed using FSE for 
its excellent immunity to susceptibility artifacts from the air-
tissue interface in the abdomen. However, as stated before, 
the SAR issues have placed a limit of the minimum echo 
spacing for FSE at high fields, leading to long scan time for 
3D MRCP based on FSE. Respiratory motion thus becomes 
the dominant factor determining image quality, which evoked 
several technical developments such as respiratory gating 
or navigator correction for free-breathing 3D MRCP with 
various levels of success (41). For MRCP with FSE in a single 
breath-hold, one has to accept the alternative of 2D thick-slab 
MRCP (42), preferably with further acceleration options such 
as parallel imaging (43). With the highly efficient acquisition 
from the multiple gradient-echoes, GRASE seems to provide 
a solution for 3D MRCP at high fields in one single breath-
hold (Figure 3). Some pilot works on MRCP with 3D GRASE 
have demonstrated better quality overall than respiratory-
triggered 3D FSE, with the superiority mainly attributed 
to the motion freezing advantage (26,44). Especially for 
patients with irregular breathing patterns, finishing the scan 
within one single breath-hold is critically important (45). 
Susceptibility-related signal loss that may be present due to 
the gradient-echo nature of the GRASE sequence did not 
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seem to be of concern (44).
Another application where GRASE is increasingly 

used nowadays is quantitative relaxation mapping, in 
particular T2 mapping. Again with its high efficiency in data 
acquisition, GRASE with different degrees of magnetization 
preparation allows for estimation of relaxation parameters 
via the conventional fitting approach. Moreover, with the 
maturation of parallel imaging using multi-channel receiver 
arrays, the series of gradient-echoes obtained within one 
echo spacing interval could actually form one individual 
EPI image, each at a different spin-echo time (TE) (46). In 
such a case GRASE turns itself into a multi-EPI sequence 
whose acquired data are directly available for T2 mapping 
(Figure 4). Experimental investigations on myocardium have 
demonstrated effectiveness of this approach (47). Excellent 
reproducibility of the quantification was reported (48), which 
is important for the rapidly moving heart, although the T2 
values measured using different sequences may not be entirely 
consistent (49). Myelin water fraction is another example 
where T2 mapping with GRASE finds usefulness (50).  
The component of T2 in the range of 5–20 msec, which is 
believed to arise from the trapped water molecules within 
the myelin sheath, can be extracted from the signal decaying 
curve with multiple TE. Technical variations on GRASE to 
attempt a direct visualization of the myelin water component 
have also been documented (51).

Conclusions

Despite of shortcomings reported during the initial 
development stage, GRASE does exhibit its unique advantages 
in the modern era of high-field MR systems. Particularly for 

the 3D version with appropriate arrangement of the phase 
encoding order and data processing to improve image quality, 
the shortened scan time of GRASE allows for imaging 
within one single breath-hold, hence suitable for abdominal 
examinations. After further technical advancements, GRASE 
is anticipated to see clinical applications in even broader areas 
than those reported in this article. Research investigations 
such as accurate quantitative relaxation mapping could also 
be one of the potential fields that may find widened use of 
GRASE, which warrants exploration by the interested MR 
scientists.
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