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Introduction

Respiratory motion can cause deleterious effects during 
the course of image-guided radiation therapy (IGRT), 
such as image artifacts during simulation (1-4), inaccurate 
target volume delineation during treatment planning (5,6), 
and erroneous patient positioning and dose deposition 

during treatment delivery (7,8). Motion modeling, in 
conjunction with deformable image registration (DIR), is 
often used to assess and correct for the effects of respiratory 
motion on radiation therapy treatment (9-11), wherein the 
respiratory motion is estimated by using DIR to estimate 
the correspondences between the images of different 
respiratory phases. The performance of DIR is highly 
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variable between different applications, depending upon 
both image quality (artifacts, image intensity and contrast, 
etc.) and registration process (user experience and skills in 
parameter selection, etc.). DIR errors are commonly seen 
and expected in clinical applications, affecting the accuracy 
of motion modeling and subsequently its applications in 
radiation therapy motion management (12).

The sources and characteristics of DIR errors vary 
for different DIR algorithms as they employ different 
transformation models, matching criteria, and optimization 
methods. DIR algorithm is often categorized into two 
groups based on the matching information used: feature-
based and intensity-based. The former focuses on 
geometrical match of image landmarks while the latter 
matches two images based on similarity in image intensity, 
treating all image voxels equally (11,13). Intensity-based 
DIR algorithms typically perform better at regions with 
good contrast than regions lacking of contrast (14,15). 
Studies have shown that visual similarity of the low-contrast 
regions does not always indicate accurate registration (16). 
For example, a good match between diaphragms and lung 
boundaries does not guarantee an accurate displacement 
vector field (DVF) within the lungs. In addition, hybrid 
DIR algorithms that use both image intensity and landmark 
pairs for image matching have also been recently developed 
(17-20) and shown great promises for DIR applications (21).

Despite various DIR algorithms have been proposed 
in research, many commercial DIR software currently 
used in the clinic are intensity-based, equipped with no or 
limited functions of feature-based DIR enhancement that 
utilizes user-specified measured displacements between 
landmark pairs. On the other hand, many sophisticated 
hybrid DIR algorithms are not fully ready yet for routine 
clinical applications. These hybrid DIR algorithms either 
perform feature-based DIR first whose results are then used 
as a starting point or constraints for subsequent intensity-
based DIR, or take a coupled approach to perform feature-
based and intensity-based DIR simultaneously. The final 
registration performance relies on the quality of the feature-
based registration. These methods lack of robustness 
for routine clinical applications because the number of 
landmarks required by these methods is hardly available 
in practice. Therefore, a flexible and robust clinical post-
processing tool that can enhance the output DVFs from 
commercial DIR software by utilizing readily available and 
reliable landmarks is highly desirable.

One of the challenges of developing such tool is the 
lack of knowledge of how a change in displacement at a 

voxel affects displacements at surrounding voxels. In the 
proposed method, we chose to derive this correlation from 
the initial DVFs, and represent it in the form of Radial basis 
function (RBF) expansion coefficients of the voxels. RBF is 
originally used for multivariate interpolation of scattered 
data on irregular grids. This property is very important 
to the application of our method because we envision that 
the landmarks with available measured displacements are 
randomly distributed across the volume of interest. Using 
Wendland’s RBF allows the method to work with this 
randomness. To perform RBF interpolation, RBF expansion 
coefficients are first derived among the known data points. 
Then new data can be fitted by a sum of RBF multiplied 
by the corresponding expansion coefficients (22,23). The 
expansion coefficients can be viewed as a description of how 
each data point correlates with surrounding data points 
at a given set of known data points. Specifically, we chose 
Wendland’s RBF to establish this local correlation with the 
following consideration. Wendland’s RBF has local support 
which is utilized to characterize the deformable nature of 
the lung motion as the motion at a certain location should 
be minimally impacted by the motion of tissues far away. 
By using Wendland’s RBF, we focused on characterizing 
motion correlation among local voxels and discarded 
the minimal impact of motion at voxels further away. In 
practice, using the locally supported Wendland’s RBF made 
matrix A (introduced in Eq. [3] in Methods section below)  
sparse, allowing potential computational acceleration in the 
future.

The aim of this work is to develop and evaluate a robust 
DIR enhancement method based on RBF expansion. 
Based on viewpoint presented above, in our method, we 
treat the RBF expansion coefficients from initial DVFs 
as an estimation of correlation between displacements 
at nearby voxels. Then the estimated correlation, i.e., 
the RBF expansion coefficients are updated under the 
guidance of sparsely available measured displacements. 
Lastly, the updated correlation is used to generate DVFs 
with enhanced accuracy. The robustness of the developed 
method was evaluated on an in-house developed digital lung 
phantom for five existing DIR algorithms. 

Methods

RBF-based DIR enhancement method

The basic idea is to use measured/known displacements of 
landmarks (or image features) to enhance the physiological 
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plausibility of DIR and subsequently reduce DIR errors in 
a time-efficient and robust manner for clinical applications. 
The designed framework is considered robust because 
it allows flexibility and has minimal restrictions on its 
input data. The two inputs of the method include the 
initial DVF (i.e., pre-enhancement DVF) which can be 
generated using any DIR algorithm, and the measured 
landmark displacements which can be of any number of 
landmarks obtained by any means (manually, automatically, 
or combined). The DIR enhancement method consists 
of three steps. The general idea is, first, to derive the 
contribution of each voxel to the displacements at nearby 
voxels, represented by the expansion coefficient map. Then 
the contribution is modified such that the RBF interpolated 
displacements at measured points agree with the measured 
displacements. In the last step, the enhanced DVF is derived 
from interpolation with the updated expansion coefficient 
map. Details are described below:

(I)	 The initial DVF is reshaped to an n-by-3 vector, 
where n is the number of voxels in the region of 
interest, labeled as upre.

( ) ( ) ( )1 2, , ,pre pre pre pre nu u x u x u x = …  	 [1]
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determined by the DIR algorithm that generated 
the initial DVF. It is then converted to a pre-
enhancement expansion coefficient vector (n-by-3), 
λpre,
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using the 3D Wendland’s compactly supported RBF 
with second derivative continuity. λpre is calculated 
by solving the following equation, 

Aλpre = upre	 [3]

where A = (ϕi,j)n×n, n is the number of the voxels 
in the region of interest, and ϕi,j is defined by the 
following equation:
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where ri,j is the Euclidean distance between voxels i 
and j, r0 is the range of support for the Wendland’s 
RBF. r0 was determined by testing different values 
at 10 mm intervals from 20 mm to 60 mm. The 
enhanced DVFs generated with different r0 were 

compared with the ground-truth DVF in the digital 
phantom in terms of residual registration error. It 
was determined that r0 =40 mm would give the best 
overall results in registration of the lungs. It should 
be noted that the optimal r0 value may be related to 
tissue properties and thus should be determined for 
each organ and tissue. 

Each row in Eq. [3], as expressed in Eq. [5], 
represents how displacement at xi is represented by 
the expansion coefficients at the nearby locations 
within a distance of r0,

( ) ( )1 ,?
n
j i j pre j pre ix u xφ λ= =∑ 	 [5]

where 1,2, ,i n∈ …
(II)	 The measured deformation vectors of landmarks 

are used to correct errors in the original coefficient 
map upre, and to generate the enhanced expansion 
coefficient map, λpost, by satisfying the following 
constraint, 

Atruth λpost = utruth	 [6]

where Atruth = (ϕi,j)m×n is a submatrix of A, consisting 
of the rows representing the measured points, m 
is the number of the voxels where the measured 
displacements are available, i.e., ϕi,j represents RBF 
between the ith landmark voxel and the jth voxel in 
the region of interest, and utruth is an m-by-3 vector 
consisting of the measured displacements.

Each row in Eq. [6], as expressed in Eq. [7] 
dictates how the enhanced λpost should satisfy the 
measured displacements, 

( ) ( )1 ,
n
j i j post j truth ix u xφ λ= =∑ 	 [7]

where 1,2, ,i m∈ …
As Eq. [6] represents an underdetermined linear 

system, a constraint is introduced to determine the 
solution λpost, 

2
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argmin
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post post pre
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λ λ λ
∈

= − 	 [8]

λpost is derived by solving Eq. [6] with constraint 
as shown in Eq. [8], using QR factorization in 
MATLAB (MathWorks, Inc., Natick, MA, USA), 
which solves an underdetermined system with 
minimized 2-norm. 

(III)	 The post-enhancement expansion coefficient map, 
λpost, is used to construct the post-enhancement 
DVF, upost using the following equation.
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Aλpost = upost	 [9]

In the proposed method, it is optional to down-sample 
the initial DVF to improve the time-efficiency of the 
method. If down-sampling is performed, the full post-
enhancement DVF is generated via linear interpolation of 
the down-sampled post-enhancement DVF. 

Digital phantom of the lungs

The RBF-based DIR enhancement method was evaluated 
using an in-house developed lung digital phantom. The 
phantom consists of two volumetric images of the thorax 
at the end-of-inhalation (EOI) and the end-of-exhalation 
(EOE) phases, and the corresponding DVF between the 
two phases which serve as the ground-truth DVF for DIR 
evaluations. This digital phantom was developed based on 

a hyperpolarized gas (Helium-3 or Xenon-129) tagging 
magnetic resonance imaging (MRI) technique which 
provides in vivo, direct measurement of lung deformation 
during respiration (24-26).

The generation of the digital phantom is illustrated in 
Figure 1 and described as follows. Subjects were imaged 
at the EOI and EOE phases using a hyperpolarized 
gas tagging MRI technique as well as a high-resolution  
(2.5 mm isotropic) 3D proton MRI technique. A sparse 
tagging displacement vector field (tDVF) was derived from 
the hyperpolarized gas tagging magnetic resonance (MR) 
images by tracking the displacements of the tagging grids 
between the EOI and EOE phases, as shown in Figure 2A.  
The 3D proton MR images of EOI and EOE were 
preprocessed via up-sampling (1 mm × 1 mm axial, 2.5 mm 
axial) and deblurring to obtain a new set of proton MR 
images with improved image quality as the base images for 
digital phantom generation. First, an estimated DVF of the 
thorax was generated by performing DIR between EOI and 
EOE image of the improved proton MRI using Velocity AI 
(VEL), labeled as VEL DVF. Secondly, VEL DVF inside 
of lungs were replaced by the sparse tagging DVF from 
tagging MRI, followed by an interpolation of the sparse 
lung DVF into a dense lung DVF using a multi-step natural 
neighbor algorithm, as shown in Figure 2B. Thirdly, DVF 
outside the lungs from the proton MRI and the DVF inside 
the lungs from the tagging MRI were combined to generate 
the model DVF which is considered as the ground-truth 
DVF of the entire thorax. The model DVF was then 
applied to the EOI images to generate the EOE image 
(deformed, not the original), completing the generation of 
the digital phantom. As the model DVF of the phantom 
was generated based on the in vivo, direct measurement 
of lung deformation during respiration, it can be used as 
independent reference to evaluate DVFs estimated by DIR.

Evaluation of DIR enhancement method using digital 
phantom 

The DIR enhancement method was tested on five DIR 
algorithms: VEL (Varian Medical Systems, Palo Alto, 
CA, USA), MIM (MIM Software, Beachwood, OH, 
USA), Improved Lucas-Kanade (ILK) and Original Horn 
and Schunck (OHS) (both are open source, available in 
DIRART toolbox in MATLAB), and Elastix (ELA) (open 
source, available online: http://elastix.isi.uu.nl/). DIR 
was performed between the EOI and EOE images of the 
digital phantom to generate the initial DVFs, upre. These 

Figure 1 Workflow of the generation of the digital phantom using 
hyperpolarized gas tagging MRI and the corresponding proton 
MRI at two respiratory phases (EOI and EOE). EOI, end-of-
inhalation; EOE, end-of-exhalation; DVF, displacement vector 
field; VEL, velocity; MRI, magnetic resonance imaging.
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initial DVFs cover a wide range of initial registration 
error levels and thus give a good indication of how our 
DIR enhancement method will perform at different 
initial error levels. We would like to emphasize that our 
study is not focused on evaluation of the five algorithms. 
Although we have fine-tuned the algorithms to get best 
registration results, the upre of the five algorithms should 
not be interpreted as representing the performance of the 
five algorithms because a fair comparison between DIR 
algorithms involve more consideration that fall beyond the 
scope of this study. The landmarks’ displacements, utruth, 
were randomly selected from within the ground-truth DVF, 
i.e., a set of randomly selected voxels within the lungs were 
designated as landmark voxels with known displacements.  
The down-sampling factor used in the digital phantom 
study was 6, resulting in a total of 6,595 control points. 

To evaluate the performance of the DIR enhancement 
method, pre- and post-enhancement DVFs were compared 
against the ground-truth DVF, and the corresponding 3D 
registration errors were determined for each voxel, e3D,i, and 
for the entire volume, e3D, which were calculated as follows 
respectively, 

( ) ( )3 , 2D i i truth ie u x u x= − 	 [10]

3 ,1
3

n
D ii

D

e
e

n
== ∑ 	 [11]

where u(xi) represents either the pre- or post-enhancement 
displacement vector at the ith voxel, utruth(xi) is the ground-
truth displacement vector at the ith voxel, and n is the 
number of voxels. Intensity difference maps between the 
original and the synthesized EOI images (by applying 

the post-enhancement DVFs onto the original EOE 
images) were also generated to evaluate the effect of DIR 
enhancement on the appearance of the deformed image. 
Further, we studied how the number of landmarks (i.e., the 
density of the landmarks) would affect the performance of 
DIR enhancement. To ensure that down-sampling does 
not affect the validity of the DIR method, we investigated 
whether the locations of the landmarks affect the 
performance of DIR enhancement. Due to computational 
limitation, we had to down-sample the upre. After down-
sampling, voxels where the landmarks are located (randomly 
chosen in the digital phantom study) may not be retained 
in the down-sampled upre. To demonstrate that the down-
sampling would not affect the validity of our method, we 
intentionally tested three scenarios with different landmark 
locations characterized by on-grid ratios of 100%, 50%, and 
0%, where 100% means all landmarks are located at voxels 
retained in down-sampled upre, and 0% means no landmarks 
are located at voxels retained in down-sampled upre. 

Results

Figure 3  shows the representative results  of  DIR 
enhancement for the five DIR algorithms. The most 
prominent effect of registration enhancement (i.e., 
registration error reduction) is observed in the right lung 
(left side), where the initial DVFs contain large areas of 
registration errors as indicated by the DVF difference 
maps. After DIR enhancement, registration errors were 
significantly reduced. In all cases expect for ILK near 
the lung boundary, registration errors disappeared nearly 
completely in the post-enhancement images. Similar 

Figure 2 Generation of the model DVF of the digital phantom within the lungs. (A) Illustration of the determination of the ground truth 
lung DVFs based on the hyperpolarized gas tagging MR images at EOI and EOE phases; (B) example of the original sparse lung DVFs 
measured from hyperpolarized gas tagging MRI and the interpolated dense lung DVFs of the digital phantom. EOI, end-of-inhalation; 
EOE, end-of-exhalation; DVF, displacement vector field; MRI, magnetic resonance imaging.
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enhancement was also observed in the left lung (right 
side), despite that the enhancements were small for VEL 
and MIM since their initial DVFs were already close to 
the ground-truth DVF. It should be noted that the DIR 
enhancement method did not completely remove all DIR 
errors, especially in areas where the initial DIR errors 
were substantial. The quantitative performance of the DIR 
enhancement method is presented in Table 1 as measured by 
the pre- and post-enhancement 3D registration error per 
voxel, e3D,pre and e3D,post. The DIR enhancement algorithm 
results in an average DIR error reduction of 2.5±2.3 mm 
(percentage error reduction: 51.1%±29.1%) across the five 
cases. 

For the evaluation of the landmark distribution wherein 
the landmarks were randomly selected for 5 times, the 
coefficient of variation (CV) in the mean 3D registration 
errors of the post-enhancement DVFs (the ratio of the 
standard deviation of post-enhancement error to the mean 
post-enhancement error) was 3.3% for VEL, 1.2% for 
MIM, 7.0% for ILK, 2.1% for OHS, and 1.7% for ELA, 
indicating that the DIR enhancement method is generally 
insensitive to the distribution of the landmarks. 

Figure 4 shows the intensity difference maps between the 
original and the synthesized EOI images (by deforming the 
EOE images via DIR, with and without DIR enhancement). 
It can be appreciated that the DIR enhancement is less 

(mm) (mm)

DVFs 3D Registration error

Ground-truth Pre PrePost Post

VEL

MIM

ILK

OHS

ELA

6  0 8  4  0–6

Figure 3 Pre- and post-enhancement DVFs in the SI direction and the corresponding 3D registration error maps for the five DIR 
algorithms. DVF, displacement vector field; VEL, Velocity AI; ILK, Improved Lucas-Kanade; OHS, Original Horn and Schunck; ELA, 
Elastix; SI, superior inferior.

Table 1 Pre- and post-enhancement 3D registration error per voxel (mm)

VEL MIM ILK OHS ELA Mean ± St.Dev.

e3D,pre 2.4 0.9 8.2 4.7 2.9 3.8±2.5

e3D,post 1.1 0.9 2.1 1.5 1.2 1.4±0.4

VEL, Velocity AI; ILK, Improved Lucas-Kanade; OHS, Original Horn and Schunck; ELA, Elastix.
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obvious in image intensity than in the DVFs (Figure 3). 
This is no surprise since the intensity similarity does not 
imply the accuracy of the underline DVFs. Yet, the DIR 
enhancement is apparent in certain areas where the initial 
registration errors are significant, such as the areas indicated 
by the circles for ILK and OHS. On average of the five DIR 
algorithms, the DIR enhancement method led to a 0.37% 
reduction per voxel in intensity error. 

Figure 5 shows the effects of the number of landmarks on 
the performance of the DIR enhancement method, showing 
the absolute (Figure 5A) and normalized (Figure 5B) 
registration error as a function of the landmark density in 
terms of number of landmarks per liter volume. Normalized 
registration error is defined as the percentage ratio of post-
enhancement registration error e3D,post to pre-enhancement 
registration error e3D,pre. e3D is the residual registration 
error per voxel averaged over the entire volume as defined 

by Eq. [11]. It can be seen than that e3D,post decreased as 
landmark density increased in a nearly inverse exponential 
manner for the five evaluated DIR algorithms. The level of 
enhancement depends upon the DIR method (i.e., the initial 
registration error): the greater the initial registration error, 
the greater the level of DIR enhancement. For example, 
ILK exhibited an initial registration error of nearly 8 mm 
which was reduced to approximately 2 mm after applying 
our DIR enhancement method. It was noticed that once 
the landmark density exceeded certain values (for example,  
100 landmarks/liter), the DIR enhancement became 
marginal with more landmarks, indicating that a reasonable 
landmark density may be sufficient to achieve acceptable 
registration accuracy for the entire volume. 

Figure 6 shows the effects of landmarks’ location 
in relation to the down-sampled DVF grids on the 
performance of the DIR enhancement method. The results 

Figure 4 Pre-enhancement (top) and post-enhancement (bottom) intensity difference maps between the original and the synthesized EOI 
images. VEL, Velocity AI; ILK, Improved Lucas-Kanade; OHS, Original Horn and Schunck; ELA, Elastix; EOI, end-of-inhalation.
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Figure 5 Absolute (A) and normalized (B) post-enhancement 3D registration errors as a function of the density of landmarks. VEL, Velocity 
AI; ILK, Improved Lucas-Kanade; OHS, Original Horn and Schunck; ELA, Elastix.
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showed that DIR enhancements were generally comparable 
between the three scenarios for all five DIR algorithms. The 
differences in the post-enhancement mean 3D registration 
error between the three on-grid ratios were all less than  
0.1 mm, despite small variations in error distributions 
between the three scenarios for some DIR methods, 
such as ILK and OHS. These results indicate that the 
DIR enhancement method was largely insensitive to the 
landmark locations in relation to the down-sampled grids. 
Therefore, down-sampling of the initial DVF can be 
robustly carried out without compromising the validity of 
the DIR enhancement method. 

Discussion

Results shown in Figure 5 suggested that it is possible 

to effectively reduce DIR errors by utilizing only a 
relatively small number of landmarks, for example, 50– 
100 landmarks/liter of lung volumes. This finding is 
informative because it is often unclear how many landmarks 
are needed in order to achieve the most possible DIR 
enhancement. Identifying more landmarks often requires 
significantly increased efforts, which cannot be justified if 
the associated benefit to DIR enhancement is only marginal. 
In addition, when registration error is smaller than the 
image resolution the registration results are typically 
considered clinically acceptable (12). However, we should 
be cautious since different clinical applications may have 
different levels of sensitivity to DIR errors. For example, 
dose warping may be more sensitive to registration error 
than contour propagation. 

It should be noted that although our method requires 

Figure 6 Post-enhancement 3D registration errors (mean error shown on figures) for the 3 simulated scenarios wherein the percentage of 
landmarks located on the down-sampled DVF grids (i.e., landmark on-grid ratio) is 100%, 50%, and 0% respectively. VEL, velocity; ILK, 
Improved Lucas-Kanade; OHS, Original Horn and Schunck; ELA, Elastix; DVF, displacement vector field.
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0.9 mm 0.9 mm 0.9 mm 0.9 mm

8.2 mm 2.1 mm 2.1 mm 2.1 mm

4.7 mm 1.5 mm 1.6 mm 1.6 mm

2.9 mm 1.2 mm 1.2 mm 1.3 mm
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landmarks, it does not necessarily mean that users need to 
manually obtain and input these landmarks when using the 
method. These landmarks can be automatically determined 
using many existing feature extraction methods. Our 
method focuses on the processing with given landmarks, 
not on the process of obtaining landmarks. In our future 
study, we will incorporate automatic feature extraction into 
our DIR enhancement method. The difference between our 
hybrid DIR method and many other hybrid DIR methods is 
that our method is flexible in terms of the type, quantity and 
distribution of landmarks. In our method, the landmarks 
can be any image features with known/measurable 
corresponding displacements between the source and target 
images. Our method focuses on the processing with given 
set of landmarks, and therefore does not restrict, neither 
depend on, the method of landmark determination. In our 
digital phantom study, the landmarks are voxels randomly 
selected whose ground-truth displacements are fed into 
the algorithm as measured displacements. In this case, the 
landmarks may not represent any actual image features.

Post-enhancement residual DIR errors were observed in 
some cases, especially in the peripheral regions of the lungs, 
as shown in Figure 6. They could have been caused by the 
instability of the RBF interpolation near the boundaries of 
the lungs. Since most voxels in the lung boundary regions 
are not on the down-sampled DVF grids, the voxels near 
the boundaries have to be extrapolated, causing more 
uncertainties than interpolation. 

Regarding the spacing between landmarks dense 
d i s t r ibut ion  o f  l andmarks  may  not  benef i t  DIR 
enhancement as explained previously due to the redundant 
information. In a small region where the displacements are 
expected to be smooth and continuous, extra landmarks 
are unlikely to provide more information than a single 
landmark. Therefore, imposing a limit on the minimum 
spacing between the landmarks may be practically useful 
to improve the time-efficiency of the DIR-enhancement 
method. This is of interest in our future studies to develop 
methods to best handle various heterogeneous distributions 
of landmarks. 

In this work, the Wendland’s compactly supported 
function was used such that the displacement of a landmark 
can influence its nearby region within a reasonable 
range. There are two assumptions in the application of 
this function: (I) displacement is smooth in a relatively 
homogenous region; and (II) displacement of one voxel 
has minimal impact on the displacement of another voxel 
far away. Furthermore, the use of RBF allows for potential 

acceleration of the process because the RBF values are all 
zeros for voxels greater than a certain range, resulting in a 
very sparse matrix A and therefore leaving great potential 
for improvement on storage and calculation efficiency. 

Our study has limitations. First, the DIR enhancement 
method was only evaluated using a digital phantom. In 
the next step, we plan to evaluate the new method using 
publicly available landmark databases, for example, the 
DIR-Lab (https://www.dir-lab.com/) as a start (16). 
Secondly, the landmarks used in this study are not actual 
anatomical landmarks such as vessel bifurcations, which 
may lead to some differences in deriving the deformation 
fields using these landmarks. The effects are to be evaluated 
systematically in a separate investigation. Thirdly, we 
intentionally did not specify the method of landmark 
extraction in this study because the landmark extraction is 
a separate process in our design. Fourthly, our evaluation 
is limited only within the lungs in this study. We did not 
evaluate it at the lung/chest wall interface where the sliding 
motion could be a major factor affecting the accuracy of the 
DIR. To validate the method at the boundary between lungs 
and chest wall, we need ground truth of the sliding motion. 
However, to our best knowledge, there is no phantom that 
can provide such ground truth information, and therefore 
we did not perform this validation in our current study. It is 
an important topic for our future study with an appropriate 
phantom.

Conclusions

In this study, we demonstrated the feasibility of a robust 
RBF-based method for enhancing DIR accuracy using 
sparsely distributed landmarks. This method has been 
shown robust and effective in reducing DVF errors using 
different numbers and distributions of landmarks for various 
DIR algorithms. It is potentially an easily implementable 
tool to enhance DIR accuracy for DIR-related applications.
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