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Background: Acute xerostomia is the most common side effect of radiation therapy (RT) for head and neck 
(H&N) malignancies. Investigating radiation-induced changes of computed tomography (CT) radiomics in 
parotid glands (PGs) and saliva amount (SA) can predict acute xerostomia during the RT for nasopharyngeal 
cancer (NPC).
Methods: CT and SA data from 35 patients with stages I–IVB were randomly collected from an NPC 
clinical trial registered on the clinicaltrials.gov (ID: NCT01762514). All patients received radical treatment 
based on intensity-modulated RT (IMRT) with a prescription dose of 68.1 Gy in 30 fractions. The patients’ 
ages ranged 24–72 years, and each patient had five CT sets acquired at treatment position: at the 0th, 10th, 20th, 
30th fractions during the RT, and at 3-month later after the RT. The PGs for each CT set were delineated 
by a radiation oncologist and verified independently by another. Patients’ saliva was collected every other  
10 days during the RT. Acute xerostomia was evaluated based on the RTOG acute toxicity scoring and the 
SA. In total, 1,703 radiomics features were calculated for PGs from each CT set, including feature value at 0th 
fraction (FV0F), FV10F, and delta FV (ΔFV10F-0F), respectively. Extensive experiments were conducted to achieve 
the optimal results. RidgeCV and Recursive Feature Elimination (RFE) were used for feature selection, while 
linear regression was used for predicting SA30F. Four more patients were added for independent testing.
Results: Substantial changes in various radiomics metrics of PGs were observed during the RT. Eight 
normalized feature value (NFV), selected from NFV0F, predicted SA10F with a mean square error (MSE) of 
0.9042 and a R2 score of 0.7406. Fourteen NFV, selected from ΔNFV10F-0F, NFV0F, and NFV10F to predict 
SA30F, showed the best predictive ability with an MSE of 0.0569. The model predicted the level of acute 
xerostomia with a precision of 0.9220 and a sensitivity of 100%, compared to the clinical observed SA. For 
the independent test, the MSE of PSA30F was 0.0233.
Conclusions: This study demonstrated that radiation-induced acute xerostomia level could be early 
predicted based on the SA and radiomics changes of the PGs during IMRT delivery. SA, NFV0F, NFV10F, and 
especially ΔNFV10F-0F provided the best performance on acute xerostomia prediction for individual patient 
based on RidgeCV_RFE_LinearRegression method of delta radiomics.
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Introduction

Permanent xerostomia is one of the most common side 
effect of radiation therapy (RT) toxicity for head and neck 
(H&N) malignancies (1). It is considered as a significant 
cause of decreased quality of life (QOL) in patients (2,3), 
by introducing swallowing and chewing hypofunction (4),  
disturbing speech, taste, and even sleep patterns (5). 
Xerostomia grade (XG) is commonly scoring via five 
level scales from Grade 0 to 4 (G0-G4) according to the 
Radiation Therapy Oncology Group (RTOG) radiation 
morbidity scoring criteria (3). Recent literatures manifested 
employing computed tomography (CT) images to predict 
the dry mouth symptoms of patients with H&N cancer after 
receiving radiotherapy (6,7). There are two major concerns 
in such scoring system: (I) inadequate objectiveness and (II) 
insufficient quantitative description. Most studies measured 
and graded using subjective and qualitative observer-rated 
toxicity grading (3), rather than the measurements of major 
salivary gland output or saliva amount (SA) for description. 
The separation between the different grades is ambiguous to 
some extent in the current toxicity grading systems, which 
also induced the difficulty of non-subjective description. 

Quantitatively and accurately predicting SA will facilitate 
clinical decision-making to prevent xerostomia, while 
radiomics can aid diagnosis by analyzing medical images (8).  
Radiomics uses automatic algorithm to extract a large 
number of feature information from the region of interest 
(ROI) of medical images as the research object, and further 
used diversified statistical analysis and data mining methods 
to extract and reveal the key information that really plays a 
role in the immense amount of information. Finally, these 
features were used in the auxiliary diagnosis, classification or 
grading of diseases (9,10). The specific steps can be divided 
into image collection, ROI segmentation, feature extraction, 
statistical analysis and classification prediction (11).

Accurate toxicity prediction could assist clinical decision-
making for planning personalized treatment. Recently, 
some studies had reported the use of radiomics features 
extracted from medical images [CT (7,12,13), MR (14,15), 
PET (16,17) and CBCT (18,19)] to improve the prediction 
models of side effect treatment. The rate of CBCT-
measured parotid glands (PGs) image feature changes 
improved the prediction concerning the dose alone for 
chronic xerostomia prediction (18). Analysis of CBCT 
images acquired for treatment positioning might provide an 
inexpensive monitoring system to support toxicity reducing 
adaptive RT. Xu et al. (20) recognized that the CT number 

changes in parotids were measurable during the delivery 
of fractionated radiotherapy for NPC. Feng et al. (21)  
revealed that the CT number could be reduced in tumor 
and PGs during the course of RT. There was a fair 
correlation between CT number reduction and radiation 
doses for a part of patients, whereas the correlation between 
CT number  reductions and volume reductions in GTV 
and PGs was weak. Recently, Wu et al. (6) pointed out that 
the significant changes in the CT histogram features of the 
PGs were observed during RT. And a practical method that 
used the changes of mean CT number and volume of PGs 
was proposed to predict radiation-induced acute xerostomia 
in multiple institutions. This method might be helpful for 
designing adaptive treatment or personalized treatment, 
such as the submandibular glands transfer prior to RT (22) 
or the concomitant administration of pilocarpine during 
radiation increases unstimulated saliva flow rate and reduces 
clinician-rated XG (23).

We noticed that all the previous work graded the 
xerostomia either by patients themselves or by physicians, 
rather than an objective reported as an main end points (24). 
In this study, a new SA prediction system was proposed 
based primarily on the changes of radiomics from CT 
images for patients with nasopharyngeal cancer (NPC) 
during radiotherapy, combined with SA and associated with 
xerostomia. As far as to our knowledge, this is the very first 
paper to quantitatively predict patients’ SA.

Methods

This article predicted the probability and extent of 
the patient’s future acute xerostomia by predicting the 
prospective SA of patient. The SA prediction model consists 
of five parts as shown in Figure 1: (I) data generation; (II) 
data preprocessing; (III) feature score calculation; (IV) 
feature selection; and (V) SA prediction. 

The data generation (Figure 1A) was described in 
Patient data. Data preprocessing elucidated the content of  
Figure 1B. Xerostomia prediction model explained in detail 
in three sub-sections: (I) the feature score calculation 
(Figure 1C); (II) feature selection (Figure 1D); and (III) SA 
prediction (Figure 1E). 

CT simulator protocols

The CT simulator in our department, a Brilliance Big Bore 
CT scanner (Philips Medical Systems, Cleveland, OH, 
USA), had monthly/quarterly/yearly QA/QC based on the 
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American College of Radiology (ACR) CT accreditation 
phantom before scanning the patients. And this CT 
simulator images showed that image quality was within 
ACR guidelines for all tested scanning protocols.

A pre-defined set of scan protocol was performed on NPC 
patients using the CT simulator and the image data were 
reconstructed with a 3 mm thickness. These images were 
generated by using the more common clinical protocol of  
3 mm slices at 3 mm increments with the scanning protocols 
most commonly used in clinical practice. The detailed 
parameters for these protocols were given as following: 
voltage 120 kVp, exposure 300 mAs, slice thickness 3 mm, 
increment 3 mm, collimation 16 mm × 0.75 mm, display 
FOV 600 mm, scan FOV 600 mm, reconstruction filter type 
UB/B, and pitch 0.567.

Patient data

CT images were retrieved to predict the dry mouth symptoms 
of patients with NPC after receiving radiotherapy. CT 
and true SA data were collected from 35 NPC patients at 
the Sun Yat-sen University Cancer Center (SYSUCC), 
Guangzhou, China. All the data were retrospectively 
analyzed. The patients with stages I–IVB, were randomly 
chosen from the control group in the NPC clinical 
trial, which was registered on the clinicaltrials.gov 
(ID: NCT01762514). The study was approved by the 
institutional review board and the ethical review office from 
the institution, and the data had been submitted to a public 
Research Data Deposit platform (www.researchdata.org.cn), 
with an approval RDD number as RDDB2018000256. The 
35 patients were used as training and validation sets, and 4 

more patients were used as the independent test set.
All patients received radical treatment based on intensity-

modulated RT (IMRT) with a prescription dose of 68.1 Gy 
in 30 fractions. The patients’ ages ranged 24–72 years, and 
each patient had five CT sets acquired using a CT simulator 
(CT Big Bore; Philips) at treatment position at 0th, 10th, 
20th, 30th fractions during RT and 3-month later after the 
RT. The PGs were delineated on each CT set by a radiation 
oncologist and verified independently by another. Acute 
xerostomia was evaluated based on RTOG acute toxicity 
scoring (3) and all the patients were evaluated in those 
XG every other ten days by the attending physician based 
on patients reporting as follows: (I) G0: no change over 
baseline; (II) G1: mild mouth dryness/slightly thickened 
saliva/may have slightly altered taste such as metallic 
taste; (III) G2: moderate to complete dryness/thick, sticky 
saliva/markedly altered taste (i.e., copious water or other 
lubricants); (IV) G3: severe dry mouth, no stimulation, 
often need to wake up at night to drink water; and (V) G4: 
acute salivary gland necrosis.

Patients saliva were collected every other 10 days during 
RT. Measurement of saliva output is the most commonly 
applied objective evaluation of xerostomia. Previous 
literature (25) comprehensively explored on how to collect 
saliva. The un-stimulated saliva was collected, which 
represents the saliva output of the whole-mouth saliva. 
Saliva collection was performed over a period of 5 minutes 
at the 0th, 10th, 20th, 30th fractions during RT and at 3-month 
later after RT. Collection of the whole saliva was performed 
by drainage and measured via a medical cylinder. All the SA 
and its changes were documented. 

The 0th fraction (0F) CT images and SA0F were used as 

Figure 1 Saliva amount prediction model.
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the baseline to predict the SA10F in this paper. The result 
was recorded as PSA10F (predicted SA at 10th fraction). 
Furthermore, 0F CT images, 10F CT images, SA0F, SA10F, 
and the corresponding changes were used together to 
predict PSA30F. The probability and extent of the patient’s 
future acute xerostomia were evaluated according to the 
PSA. Patient characteristics along with other data were 
summarized in Table 1.

Data preprocessing 

The PGs of 35 patients were delineated on each CT set by a 
radiation oncologist and verified independently by another 
one. More than 5,000 radiomics features were obtained from 
each annotated CT (Figure 1A) using 3D Slicer (26-28).  
3D Slicer has an extension module called Radiomics which 
provides an interface to the PyRadiomics library (https://
github.com/Radiomics/pyradiomics). PyRadiomics is an 
open-source python package for extracting Radiomics 
features from medical imaging. Current possible image 
types for PyRadiomics are Original, Wavelet, LoG, Square, 
SquareRoot, Logarithm, Exponential, Gradient, LBP2D 
and LBP3D. In this article, Original (no filter applied) and 
Wavelet (wavelet filtering, yields 8 decompositions per level, 
and all possible combinations of applying either a High or a 
Low pass filter in each of the three dimensions), two types 
of image were utilized. Various features can be extracted by 
PyRadiomics. They can be divided into seven categories: 
First Order, Shape, Gray Level Co-occurrence Matrix 
(GLCM), Gray Level Run Length Matrix (GLRLM), 
Gray Level Size Zone Matrix (GLSZM), Neighbouring 
Gray Tone Difference Matrix (NGTDM) and Gray Level 
Dependence Matrix (GLDM). All the mentioned features 
categories were employed in our method.

In all, 1,703 feature values (FVs) were extracted from 
radiomics features for each CT set by data cleaning, 
which includes checking data consistency, handling invalid 
values and missing values. In addition, we performed data 
augmentation through the normalization process (29) and 
the differences between those FVs (Figure 1B).

In this paper, the FVs at 0th fraction (include SA0F), 
named FV0F, were employed to predict the SA at 10th 
fraction (PSA10F). FV0F, FV10F and delta radiomics FVs 
named as delta FV (ΔFV10F-0F) were also used to predict 
PSA30F. Besides the original data set, L2-norm normalization 
was performed on FV0F and FV10F, to ensure all the features 
were on the same order of magnitude. Formally, given one 

feature x={x1, x2,..., xn} where n represents the number of 
patients, the L2-norm x  is formulated as:

1
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x x
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And the normalization formula is deduced as:
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where '
ix  is the normalized feature value (NFV) or 

normalized SA (NSA). 
Besides normalization, the feature difference was added 

between FV10F and FV0F (ΔFV10F-0F) to the data set, while 
the ΔFV10F-0F was normalized to obtain the ΔNFV10F-0F. The 
difference feature was also considered as a kind of feature. 
ΔNFV10F-0F was added to the data set to verify the effect of 
feature changes on predicting patients’ future SA, which 
can further determine whether the prediction ability of the 
difference feature was stronger than the ordinary ones or not.

Xerostomia prediction model

After the data preprocessing, the FVs and SA labels were 
used to calculate the feature scores (Figure 1C) by specified 
functions. Then K features were filtered out based on the 
scores ranking (Figure 1D). Finally, the selected features 
were applied to predict the SA (Figure 1E) by prediction 
functions. The functions were shown in Table 2. The first 
column was nine score calculation functions, which match 
with 2 feature selection functions placed in the second 
column. The third column contained eight SA prediction 
functions. We tried the various combination of machine 
learning techniques to determine the best method to predict 
SA efficiently and accurately.

Feature score calculation
After the data were preprocessed, nine score calculation 
functions were used to generate the feature scores, as 
following:

(I)	 f_regression: this is a univariate linear regression 
test (30), which is used in feature selection 
procedure, the formula for calculating the f value 
is shown as follows:

( ) ( )
( ) ( )

j j
j

j

X X Y Y
r

std X std Y

− ∗ −
=

∗
	 [3]

https://github.com/Radiomics/pyradiomics
https://github.com/Radiomics/pyradiomics
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Table 1 Patient demographic and treatment information and xerostomia grade (XG) at 10th and 30th fraction (F: female; M: male)

Patient No. Age (years) Sex Stage Chemotherapy XG at 10F XG at 30F

1 24 M T2N2M0 III Yes 0 1

2 49 M T2N2M0 III Yes 2 3

3 35 M T1N2M0 III Yes 1 2

4 25 M T2N0M0 II No 0 1

5 40 M T2N1M0 II No 1 2

6 40 F T2N3M0 IV Yes 1 2

7 65 M T3N1M0 III Yes 1 2

8 32 M T4N2M0 IV Yes 1 2

9 33 M T2N2M0 III Yes 1 2

10 52 M T4N1M0 IV Yes 1 2

11 48 M T3N1aM0 III Yes 1 2

12 72 M T2N1M0 II No 0 1

13 57 M T2N1M0 II No 1 2

14 56 M T4N2M0 IV Yes 1 2

15 40 M T3N1M0 III Yes 1 2

16 37 F T2N2M0 III Yes 2 2

17 70 M T2N1M0 II No 0 1

18 48 M T3N1M0 III Yes 1 2

19 43 M T2N0M0 II No 1 2

20 56 M T4N2M0 IV Yes 1 1

21 59 M T3N0M0 III Yes 2 2

22 32 F T3N1M0 III Yes 1 2

23 32 M T2N2M0 III Yes 0 2

24 47 F T4N2M0 IV Yes 1 2

25 51 F T4N1M0 IV Yes 1 2

26 62 F T4N2M0 IV Yes 1 2

27 62 M T3N0M0 III Yes 1 2

28 35 M T1N2M0 III Yes 1 2

29 30 M T3N3M0 IV Yes 1 2

30 29 F T3N3bM0 IV Yes 1 2

31 48 M T3N0M0 III Yes 1 2

32 53 M T3N1M0 III Yes 0 1

33 50 M T3N0M0 III Yes 1 2

34 35 M T3N2M0 III Yes 1 2

35 53 F T2N1M0 II No 1 2
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where Xj represents the vector of all patients on 
the feature of j, Y is the vector of SA label. And 
std() indicates standard deviation function. rj is the 
sample correlation coefficient. Hence, the larger 
the f value, the greater the correlation between 
the j-feature and the dependent variable Y.

(II)	 mutual_info_regression: this function is able to 
estimate the mutual information I(X,Y) (31,32) 
of two target variables, which can measure the 
dependency between two samples. The formula is 
defined as: 

( ) ( ) ( )
( ) ( )

,
, , log

j

j
j

X X j

p X Y
I X Y p X Y

p X p Y∈

= ∑ 	 [5]

where X={X1, X2,..., Xm} is the set of all features and 
m represents the number of features, p(Xj, Y) is joint 
probability distribution function of Xj and Y. And 
p(Xj) and p(Y) are marginal probability function. 
Higher I(X,Y) implies higher dependency between 
two variables.

(III)	 DecisionTreeRegressor: decision tree regressor is 
an unsupervised regression method, and it learns 
simple decision rules from features to predict the 
target variable (33-35).

(IV)	 RandomForestRegressor (36): in the integrated 
model of the random forest, the samples of each 
tree are constructed from the training set after 
the put-back sampling. In addition, the selected 
segmentation point is not the best segmentation 

point for all features, but the best segmentation 
point in a random subset of features (37).

(V)	 ExtraTreesRegressor: in the extra tree, the 
randomness in the method of calculating the 
segmentation point is further enhanced. Instead 
of finding the most discriminating threshold, the 
threshold here is randomly generated for each 
candidate feature, and selecting the best one of 
these thresholds as the segmentation rule (37,38).

(VI)	 LinearRegression: this function is a least squares 
linear regression (36,39), which minimizes the 
residual sum of squares between X and Y by 
fitting a linear model with the coefficient w = (w1, 
w2, …, wp):

2

2
min

w
Xw Y− 	 [6]

However, this method relies on the mutual 
independence of the model terms. The least 
squares estimate will be very sensitive to random 
errors and produce a large variance when the 
columns (features) of X are approximately linearly 
dependent and terms are correlated (40).

(VII)	 Ridge: ridge regression solves the problem of 
ordinary least squares by imposing punishment on 
the size of the coefficient (40), which minimizes 
the residual sum of squared with penalty:

2 2

2 2
min

w
Xw Y wα− + 	 [7]

where α ≥0, and the larger the α, the greater the 
shrinkage and the stronger the robustness of the 
coefficient w to the collinearity (41).

(VIII)	 RidgeCV: RidgeCV implements Ridge regression 

Table 2 Feature score calculation, selection and predication model for the predicted saliva amount (PSA)

Feature score calculation Feature selection Saliva amount prediction

f_regression SelectKBest SVR

mutual_info_regression DecisionTreeRegressor

DecisionTreeRegressor RecursiveFeatureElimination (RFE) ExtraTreesRegressor

ExtraTreesRegressor Lasso

Lasso LinearRegression

LinearRegression RandomForestRegressor

RandomForestRegressor Ridge

Ridge RidgeCV

RidgeCV
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with cross-validation (CV) of built-in Alpha 
parameters (40).

(IX)	 Lasso: this function is a l inear model for 
estimating sparse coefficients. It tends to 
use fewer variables or parameters, which can 
effectively reduce the number of variables that the 
given solution depends on (40,42). Its minimized 
objective function is as follows:

2

2 1

1min
2w

Xw Y w
n

α− + 	 [8]

where α is a constant, n is the number of samples 
and 

1
w  is the ℓ1-norm of the parameter vector.

Feature selection
The score calculation function (Figure 1C) needs to 
combine with the feature selection function (Figure 1D) to 
filter out the features. This paper employed the SelectKBest 
and recursive feature elimination (RFE) (43) to select the 
features (Table 2). 

(I)	 SelectKBest is able to remove all features except 
the K features with the highest score, and the 
retained features are the target features, where the 
K value can be customized. 

(II)	 RFE selects the specified number K of features by 
recursively considering smaller and smaller sets of 
features.

SA prediction
The features, filtered by feature selection, were used to 
predict the SA (Figure 1E). Eight prediction functions 
were used, and most of them were the same as the score 
calculation function, except for the support vector 
regression (SVR) (40) (in Table 2 column 3). The output of 
this step was the predicted value of the SA (PSA), which 
could be used as a predictor of the acute xerostomia.

Results

Model selection

Various feature selection and SA prediction function 
combinations could be considered. There were nine score 
calculation functions (in Table 2 column 1) and two feature 
selection functions (in Table 2 column 2), which could 
produce nine combinations for selecting features. And there 
were also eight methods for SA prediction (in Table 2 column 
3). Therefore, a total 72 combinations of feature selection 
and SA prediction function were tested in all (Table 2).  
Besides, the experimental data can be preprocessed by 
various ways, such as whether to normalize, whether to take 
the difference. Here we considered total 24 forms (Table 3). 
Therefore, the best model and data preprocessing method 
were finally chosen based on the experimental results.

We designed a set of experiments according to the 
input data form (as shown in Table 3) and the functions (as 
shown in Table 2) to predict SA. The number of selected 
feature quantity K, which was difficult to be set at very 
beginning, could be determined by experiments. And range 
of candidate K was from 1 to 16. And the CV coefficient of 
the prediction function was initialized to 3.

The training stage was composed of three parts: score 
calculation, feature selection and SA prediction. It was 
worth noting that all the 35 patients’ data were used in 
score calculation and feature selection stage, while the 
CV technique mentioned was only used for SA prediction 
function in training stage.

The optimal result for PSA10F and PSA30F is shown in 
Table 4. The model is evaluated by MSE (mean square 
error) (39), which is shown as follows:

( )2

1

1M ˆSE
n

i i
i

y y
n =

= −∑
	 [9]

Table 3 Experimental data set for prediction input

SA label Feature

SA10F or NSA10F FV0F or NFV0F

SA30F or NSA30F FV0F or NFV0F

FV10F or NFV10F

{FV0F, FV10F} or {NFV0F, NFV10F}

ΔFV10F-0F or ΔNFV10F-0F

{FV0F, FV10F, ΔFV10F-0F} or {NFV0F, NFV10F, ΔNFV10F-0F}

SA, saliva amount; NSA, normalized saliva amount; FV, feature value; NFV, normalized feature value.
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where n is the number of samples, yi is the SA true value of 
the ith patient, and ˆiy  is predictive value. Reference MSE (R_

MSE) is defined as ( )2

1
1 n

i i iy y
n = −∑ . Hence, the smaller the 

MSE, the more accurate the prediction.
Experimental results showed that the best prediction 

model for PSA10F was RidgeCV_RFE_LinearRegression. 
Experimental results also showed that the best two 
prediction models for PSA30F was RidgeCV_RFE_
LinearRegression with {NFV0F, NFV10F, ΔNFV10F-0F} datasets 
and LinearRegression_RFE_LinearRegression with 
NFV10F-0F datasets, respectively. They had the similar MSE 
as shown in Table 4 (0.0801 vs. 0.0754).

In order to determine the final model of predicting PSA30F, 
the pros and cons of the methods for PSA30F in Table 4 rows 2 
and 3 were further discussed by changing the CV coefficient, 
and the result was shown in Table 5.

Table 5 shows that as the CV of the prediction function 
increases, the advantages of using {NFV0F, NFV10F, ΔNFV10F-0F}  
datasets with RidgeCV to calculate feature scores become 
apparent. Hence, the best predictive model of PSA30F was 
RidgeCV_RFE_LinearRegression with {NFV0F, NFV10F, 
ΔNFV10F-0F} datasets.

A large number of experiments demonstrated that NFV 
prediction results were better than FV, the FV results were 
not given in the paper. For detailed experimental results, 
please refer to Table S1.

We also did a related experiment to predict NSA 
(PNSA10F and PNSA30F), however, because predicting PSA is 
more in line with clinical needs, Table 4 focuses on the result 
of PSA. The best predictions for PNSA10F and PNSA30F 
were detailed in Table S1.

SA prediction

Predicting PSA10F

We used RidgeCV_RFE_LinearRegression model 
with NFV0F datasets and SA0F to predict PSA10F. The 
experimental result with K=8 gave the best result (the 
smallest MSE of 0.9042). However, prediction results 
between K=6 (Table S1, an MSE of 0.9548) and K=8 were 
close, which K=6 had fewer features. Therefore, both sets 
of features could be considered. In this paper, the eight 
features and their weights were given in Table 6. Please note 
that the “h” means High-pass filter and the “l” means Low-
pass filter in “hhl” or “lhh” of the feature names, and the 
last “r” means Right and the last “l” means Left. Ranking 
indicated the sequential order of the features’ selection. 
The features were selected by score calculation and feature 
selection, and the weights were yielded in SA prediction 
stage by specific function based on the data from all 35 
patients. The related weights of the six features were given 
in Table S2.

Predicting SA10F with the LinearRegression function, 

Table 4 The optimal result for PSA10F and PSA30F

PSA Feature Score calculation Feature selection K Prediction CV MSE R_MSE

PSA10F NFV0F RidgeCV RFE 8 LinearRegression 3 0.9042 3.6886

PSA30F {NFV0F, NFV10F, ΔNFV10F-0F}
† RidgeCV RFE 14 LinearRegression 3 0.0801 0.7297

ΔNFV10F-0F
† LinearRegression RFE 14 LinearRegression 3 0.0754

†, the method to be further compared, and the results were listed in Table 5. RFE, Recursive Feature Elimination; MSE, mean square error; 
CV, cross-validation.

Table 5 Prediction results of PSA30F under different CV coefficients

Feature Score calculation Feature selection K Prediction CV MSE

{NFV0F, NFV10F, ΔNFV10F-0F} RidgeCV RFE 14 LinearRegression 4 0.0729

6 0.0696

ΔNFV10F-0F LinearRegression RFE 14 LinearRegression 4 0.0754

6 0.0704

PSA, predicted saliva amount; RFE, Recursive Feature Elimination; MSE, mean square error; CV, cross-validation.
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MSE was 0.9042 and R2 score was 0.7406 in the verification 
phase while CV was 3 (Table 4). The R2 score is shown as:

( )
( )
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2 1
2
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R 1
ˆn

i i
n

i i

y y

y y

−
= −

−

∑
∑ 	 [10]

where iy  is mean SA. The denominator is the true data 
dispersion degree, and the numerator is the prediction 
error. The division of the two intends to eliminate the 
influence of the true data dispersion degree. When the R2 is 
higher, the model fits the data better.

Figure 2 shows the prediction results of SA10F.White 
histogram and green solid line represented the predicted 
result, black histogram and red dash line were the 
distribution of true SA and gray part indicated the overlap 

between reality and prediction. The x-axis represented 
the SA, and the left y-axis represented probability for the 
histogram, while the right y-axis represented density for the 
fitting curve. The histogram showed the distribution of SA 
and the fitting curve was kernel density estimation, which 
gave the distribution of the data more explicitly. The true 
and corresponding predicted values of PSA10F were given 
in Table 7, and the P value between SA10F and PSA10F was 
0.9888.

Predicting PSA30F

The RidgeCV_RFE_LinearRegression model with {NFV0F, 
NFV10F, ΔNFV10F-0F} datasets were applied to predict PSA30F, 
K=14 was selected by experiment result. The weights of the 
fourteen features were given in Table 8.

LinearRegression function with 35 CV (leave one out 
protocol) was utilized to get the best prediction results for 
PSA30F in the verification phase. The best MSE was 0.0569 
and R2 score was 0.9220. The results showed that the error 
was small enough by using the above 14 features to predict 
PSA30F, while the model fitted the data well. Please note 
that ten delta radiomics features out of the fourteen features 
played an important role in the PSA30F.

Figure 3 showed the prediction results of PSA30F. The 
prediction curve was basically consistent with the true curve. 
The specific values of PSA30F were also given in Table 7,  
and the P value between SA30F and PSA30F was 0.8845.

Independent testing

In general, our model tried to predict the SA based on 

Table 6 The eight features and weights of PSA10F

ID Ranking Feature Weights

1 No. 6 0F_wavelet-hhh_firstorder_median_parotid_r −4.4827

2 No. 3 0F_wavelet-hhh_glcm_correlation_parotid_l −4.5370

3 No. 8 0F_wavelet-hhl_glcm_clustershade_parotid_l −2.7172

4 No. 1 0F_wavelet-hll_glszm_lowgraylevelzoneemphasis_parotid_l 8.0633

5 No. 5 0F_wavelet-lhh_firstorder_mean_parotid_r 3.6109

6 No. 2 0F_wavelet-lhh_glrlm_longrunlowgraylevelemphasis_parotid_r 2.6036

7 No. 7 0F_wavelet-lhh_glrlm_shortrunlowgraylevelemphasis_parotid_r 3.6465

8 No. 4 0F_saliva amount −5.4791

Bias 5.2181

PSA, predicted saliva amount.

Figure 2 The result of PSA10F. PSA, predicted saliva amount; SA, 
saliva amount.
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Table 7 The true SA and the prediction SA

Patient No. SA10F (mL) PSA10F (mL) SA30F (mL) PSA30F (mL)

1 2.6 2.36 1.7 1.45 

2 0.5 0.00 1.5 1.22 

3 9.0 7.08 1.0 1.06 

4 3.0 3.22 0.0 0.44 

5 4.0 3.13 0.9 0.60 

6 3.5 2.66 1.8 1.79 

7 7.5 8.97 2.5 2.61 

8 4.0 1.95 1.2 1.55 

9 3.2 3.41 0.3 0.24 

10 0.8 1.36 0.0 0.04 

11 2.3 2.48 1.0 0.96 

12 1.0 2.01 1.5 1.90 

13 0.7 1.17 2.5 3.09 

14 0.5 0.80 0.3 0.29 

15 0.0 0.47 0.0 0.00 

16 2.5 3.04 1.0 1.25 

17 1.5 2.19 2.0 2.10 

18 2.5 2.48 2.1 2.15 

19 1.0 2.06 0.0 0.00 

20 3.7 3.43 2.5 2.14 

21 3.1 3.65 0.5 0.68 

22 1.5 0.73 0.5 0.85 

23 1.0 0.64 0.5 0.70 

24 2.1 2.26 0.2 0.20 

25 4.4 3.67 2.1 1.91 

26 2.5 2.99 2.6 2.53 

27 1.2 2.12 0.0 0.08 

28 5.0 3.70 0.5 0.40 

29 1.0 0.99 0.2 0.16 

30 3.7 4.27 2.0 1.75 

31 0.5 2.01 0.5 0.49 

32 2.0 3.95 2.0 1.68 

33 3.5 0.99 1.5 1.93 

34 0.5 0.00 0.2 0.25 

35 2.5 1.85 1.2 0.88 

SA, saliva amount; PSA, predicted saliva amount.
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specific features (8 features in Table 6 for PSA10F, 14 features 
in Table 8 for PSA30F) and the LinearRegression was used 
as the SA prediction function. In order to prove the model 
and the selected features were also applicable to other 
datasets, four unseen patients were used for testing. The 
Table 9 showed that the PSA10F (Table 9 column 4) were not 
close to the true value (Table 9 column 3), while PSA30F were 

accurate enough with the true value (Table 9 column 6). The 
MSE of PSA30F was 0.0233 and R2 score was 0.8680. The 
reason might be that most of the selected features (10 out 
of 14) used for predicting SA30F were delta radiomics, which 
can effectively represent features’ changes during RT.

Discussion

Predicting acute xerostomia through the changes in the 
PGs had been proposed in previous literatures. However, 
most of the studies focused on merely a few common 
features [e.g., volume and Hounsfield units (HU) (6)], 
which could not comprehensively extract and analyze such 
large number of features for PGs. In this paper, the method 
was implemented by using radiomics and delta radiomics. 
It can be divided into following stages: image collection, 
ROI segmentation, feature extraction, statistical analysis, 
classification and prediction. It showed that radiomics can 
automatically extract a large number of features from the 
ROI of medical images, and identifies key features based 
on statistical analysis. Finally, these features were applied 
in the auxiliary diagnosis and treatment through detailed  
analysis (8,9,11). 

This article quantified the SA by systematically analyzing 

Table 8 The fourteen features and weights of PSA30F

ID Ranking Feature Weights

1 No. 1 0F_wavelet-hhl_firstorder_skewness_parotid_l −1.0103

2 No. 11 0F_wavelet-hll_firstorder_median_parotid_l −1.1899

3 No. 9 0F_wavelet-hll_ngtdm_strength_parotid_l −1.3942

4 No. 14 10F_wavelet-hll_ngtdm_busyness_parotid_r 0.6046

5 No. 2 Δoriginal_glszm_sizezonenonuniformity_parotid_l −1.1343

6 No. 7 Δoriginal_glszm_zonepercentage_parotid_r 1.8854

7 No. 8 Δoriginal_shape_maximum3ddiameter_parotid_l −1.5198

8 No. 5 Δwavelet-hhh_glszm_sizezonenonuniformitynormalized_parotid_l 1.1849

9 No. 13 Δwavelet-hlh_firstorder_skewness_parotid_l −0.6800

10 No. 3 Δwavelet-hlh_glrlm_shortrunlowgraylevelemphasis_parotid_l −1.5883

11 No. 10 Δwavelet-lhh_glcm_differenceentropy_parotid_l 1.2062

12 No. 6 Δwavelet-lhh_gldm_largedependencehighgraylevelemphasis_parotid_l 1.1405

13 No. 12 Δwavelet-llh_glcm_imc2_parotid_l −1.0097

14 No. 4 Δwavelet-lll_glcm_correlation_parotid_r −0.5980

Bias 0.8049

PSA, predicted saliva amount.

Figure 3 The result of PSA30F. PSA, predicted saliva amount; SA, 
saliva amount.
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a large number of features extracted from the PGs to 
achieve predicting acute xerostomia. Finally, eight (Table 6)  
and fourteen (Table 8) features to applied to predict SA10F 
and SA30F, and the precision were 0.7406 and 0.9220, 
respectively. The sensitivity reached 100% because every 
patient received a PSA. On the other hand, the P values for 
the 10F and 30F were both greater than 0.05 (0.9888 and 
0.8845), which indicated no significant statistical difference 
between the true and the prediction values, and the 
experimental results expressed clinical significance.

We noted that delta radiomics (ΔFV10F-0F) held a larger 
proportion (10/14) when predicting SA30F. It indicated that 
the variation of features contributed significantly to the 
quantitative prediction of SA. However, volume and HU, 
which played an important role in other studies (6), were 
not selected out in this article. We speculated the reason 
was that the wavelet features had a large ratio in all the 
features exacted in our study. Radiomics data contain first-, 
second-, and higher-order statistics, and the high-order 
features might overcome the low-order (first-order) grey 
features in this PGs study.

Moreover, our prediction accuracy for SA30F at the 10th 
of RT reached 0.9220, in other words, the system could 
accurately predict the acute xerostomia of patients after 30th 
fractions of RT as soon as possible, which was a key step for 
early xerostomia prediction.

Conclusions

We observed and quantified the radiomics changes in 
the PGs during the fractionated RT for NPC to predict 
SA10F and SA30F. The RidgeCV was used to calculate the 
features score, RFE was used to select feature, and Linear 
Regression was used to predict SA both at 10F and 30F. 
The optimal result of PSA10F was achieved using 8 features 
(Table 6) with an MSE of 0.9042 and R2 score of 0.7406. 
Meanwhile 14 features (Table 8) performed the best at 

PSA30F with an MSE of 0.0569 and R2 score of 0.9220. 
This result indicated that the proposed method was able to 
accurately predict patients’ SA at early stage and prevent the 
xerostomia symptom in advance. 

In this paper, only the un-stimulated SA was used to 
build the model, and the stimulated saliva data can be added 
into the model to increase the robustness of the method in 
the following work. In addition, how to accurately predict 
the late xerostomia for the patients after RT is still a 
difficult problem. We would work on it in the near future, 
since the PGs surface/volume reduction might be associated 
with late xerostomia. The early post treatment model 
with delta PG-surface and acute xerostomia scores can be 
considered as a surrogate marker for late xerostomia (44). 
What is more, we will increase training data and test data 
gradually and further improve the model to improve the 
accuracy of SA prediction. Other diseases could also benefit 
from this model with moderate adjustment. 
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SA, saliva amount; PSA, predicted saliva amount.
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Supplementary

Table S2 The six features and weights of predicting PSA10F

ID Ranking Feature Weights

1 No.6 0F_wavelet-hhh_firstorder_median_parotid_r −3.5515

2 No.3 0F_wavelet-hhh_glcm_correlation_parotid_l −4.461

3 No.1 0F_wavelet-hll_glszm_lowgraylevelzoneemphasis_parotid_l 6.568

4 No.5 0F_wavelet-lhh_firstorder_mean_parotid_r 3.8897

5 No.2 0F_wavelet-lhh_glrlm_longrunlowgraylevelemphasis_parotid_r 6.1709

6 No.4 0F_saliva amount −5.1888

Bias 5.2693

Using RidgeCV_RFE_LinearRegression model with NFV0F datasets to predict SA10F, and the experimental result with K=6 is second best. The related weights of the six features were given in this table, whose MSE was 0.9548 and R2 score was 0.7149. SA, saliva amount; 
PSA, predicted saliva amount.

Table S1 The optimal result for PSA10F, PNSA10F, PSA30F and PNSA30F

PSA Feature Score calculation
Feature 

selection
K DecisionTreeRegressor ExtraTreesRegressor Lasso LinearRegression RandomForestRegressor Ridge RidgeCV SVR R_MSE

PSA10F FV0F f_regression SelectKBest 8 2.6147 2.8418 2.2806 3.7410 2.6248 2.1036* 2.1297 4.6501 3.6886

NFV0F RidgeCV RFE 6 3.6999 3.0042 4.4033 0.9548* 2.9245 3.3750 1.7392 4.1900

NFV0F RidgeCV RFE 8 3.3218 3.2805 4.4033 0.9042*# 3.5698 3.4684 1.6890 4.2368

PNSA10F FV0F RandomForestRegressor RFE 11 0.1133 0.0785 0.0706 0.0604 0.0778 0.0321* 0.0373 0.0575 0.0496

NFV0F RidgeCV RFE 12 0.0201 0.0157 0.0563 0.0059* 0.0182 0.0301 0.0100 0.0352

PSA30F FV0F mutual_info_regression SelectKBest 11 0.9863 0.4195* 0.7308 1.0910 0.5824 0.7310 71.58 0.7369 0.7297

FV10F RandomForestRegressor RFE 2 0.4460 0.2612* 0.4938 0.5413 0.2653 0.4633 0.4749 0.6175

{FV0F, FV10F} RandomForestRegressor RFE 2 0.5187 0.2910* 0.4729 0.6013 0.3823 0.4635 0.4782 0.6419

ΔFV10F-0F ExtraTreesRegressor RFE 8 1.4424 0.7342 0.6158 0.4229* 0.8592 0.5485 4.7127 0.7369

{FV0F, FV10F, 
ΔFV10F-0F}

RandomForestRegressor RFE 7 0.3826* 0.6701 1.0878 2.0266 0.5011 0.9635 1.0891 0.7369

NFV0F RidgeCV RFE 13 0.7356 0.6071 0.7349 0.4737 0.6027 0.4141 0.1625* 0.7000

NFV10F RidgeCV RFE 7 1.1659 0.6228 0.7349 0.1738* 0.6056 0.5724 0.2391 0.7403

{NFV0F, NFV10F} RidgeCV RFE 15 1.0848 0.6059 0.7349 0.6979 0.6803 0.3775 0.1270* 0.6998

ΔNFV10F-0F LinearRegression RFE 14 1.3734 0.5227 0.7349 0.0754*# 0.6997 0.3747 0.0990 0.6791

{NFV0F, NFV10F, 
ΔNFV10F-0F}

RidgeCV RFE 14 1.2432 0.6850 0.7349 0.0801*# 0.7759 0.3675 0.1076 0.6781

PNSA30F FV0F DecisionTreeRegressor RFE 2 0.0155 0.0139 0.0244 0.0260 0.0126* 0.0260 0.0260 0.0267 0.0262

FV10F RandomForestRegressor RFE 7 0.0288 0.0152 0.0236 0.0121* 0.0189 0.0158 30.41 0.0267

{FV0F, FV10F} DecisionTreeRegressor RFE 8 0.0225 0.0129* 0.0208 0.0335 0.0191 0.0272 0.8601 0.0267

ΔFV10F-0F DecisionTreeRegressor RFE 3 0.0255 0.0122* 0.0268 0.0157 0.0174 0.0245 0.0273 0.0267

{FV0F, FV10F, 
ΔFV10F-0F}

DecisionTreeRegressor RFE 9 0.0125* 0.0225 0.0249 209544 0.0184 0.0322 0.8942 0.0267

NFV0F RidgeCV RFE 14 0.0508 0.0194 0.0263 0.0119 0.0230 0.0141 0.0050* 0.0154

NFV10F RidgeCV RFE 16 0.0351 0.0176 0.0263 0.0078 0.0187 0.0150 0.0048* 0.0176

{NFV0F, NFV10F} LinearRegression RFE 15 0.0316 0.0172 0.0263 0.0161 0.0214 0.0123 0.0034* 0.0144

ΔNFV10F-0F RidgeCV RFE 15 0.0276 0.0167 0.0263 0.0045 0.0240 0.0114 0.0029* 0.0161

{NFV0F, NFV10F, 
ΔNFV10F-0F}

RidgeCV RFE 16 0.0320 0.0166 0.0263 0.0013* 0.0183 0.0100 0.0018 0.0144

This table shows the optimal result for PSA10F, PNSA10F, PSA30F and PNSA30F, where SA means saliva amount, PSA means prediction saliva amount, PNSA means prediction normalized saliva amount, PSA10F means predicting saliva amount at 10th fraction, FV means 
feature value, NFV means normalized feature value and ΔFV10F-0F means the feature difference between FV10F and FV0F. K represents the number of features selected by the feature selection function. Columns 6 to 13 were saliva amount prediction methods. * was the 
optimal MSE of one row. R_MSE (reference mean square error) was a reference value. # means the selected models presented in our papers.
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