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Introduction

Functional images such as single photon emission 
computed tomography (1) and xenon-enhanced computed  
tomography (2) have been used in the diagnosis and 

evaluation of treatment response assessment. Recently, 
four-dimensional computed tomography (4DCT), which 
is routinely used in treatment planning for patients treated 
with radiation therapy, has been used to generate ventilation 
images and this technique has proven to be a fast and cost 
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effective technique for lung function assessment (3). 
There are studies showing that radiation dose to the 

normal lung increases the risk of lung toxicity, such as 
dyspnea, pneumonitis, and fibrosis (4-8). Thus, restrictions 
in dose/volume are attempted during radiation treatment 
planning to limit the toxicity to the lung, which may lead 
to respiratory deficiency. To optimize the treatment plan, 
it is therefore important to understand how radiation 
dose delivered to different ventilation areas of the lung is 
associated with clinical outcome. As an efficient tool to 
quantify the relationship between dose and ventilation, 
ventilation imaging reveals region-specific information 
about the lung function.

4DCT-based ventilation imaging techniques often 
calculate ventilation function locally within each voxel (9).  
The accuracy of the resulting ventilation image will depend 
on the accuracy of DIR in individual voxels. Note that 
DIR errors in general are in the range of 1 to ~3 mm (10), 
which is comparable to the size of image voxels. This 
may introduce large uncertainties in the computation 
of ventilation images. In order to reduce the effect of 
displacement errors in individual voxels, we used a finite 
element-based biomechanical method in combination with 
DIR to calculate the relative volumetric variation in the 
lung (11-13). 

The purpose of this study is twofold: (I) to investigate 
if radiation dose to higher ventilation regions will cause 
worse clinical outcome and (II) to evaluate the impact 
of different ventilation calculation methods on outcome 
assessment. Two ventilation imaging methods were used to 
identify different ventilation regions, and the correlation of 
radiation dose with clinical outcomes in these regions were 
fully analyzed. This study may help support the principle 
of function-guided radiotherapy (14) for sparing high 
functional lung areas during treatment planning. 

Methods

Patient cohort 

A total of 30 non-small cell lung cancer (NSCLC) patients 
treated with SBRT at Henry Ford Hospital were used for 
this study. Patients received 4 fractions of 12 Gy/fraction. 
Of the 30 patients 26 were NSCLC stage I, 1 was stage 
II, and 3 were stage IV. All patients had a pre-treatment 
4DCT image routinely acquired for their treatment 
planning. Radiation dose was calculated using the analytical 
anisotropic algorithm implemented in Eclipse treatment 

planning system (Varian IEC; Varian Medical Systems, Inc, 
Palo Alto, CA). Dyspnea scores were available for these 
patients at 3 to 6 months post RT (range, 3–6 months). 
19 out of the 30 patients had a tumor in the upper lobe, 
2 in the middle lobe, and 9 in the lower lobe. According 
to the Common Terminology Criteria for Adverse Events 
version 3.0 scoring system, grade 0 is no dyspnea, grade 
1 is shortness of breath with moderate exertion, grade 2 
is shortness of breath with minimal exertion, grade 3 is 
shortness of breath at rest, grade 4 can cause life threatening 
consequences, and grade 5 is death. The clinical endpoint 
of this study was dyspnea scores of grades 2 or higher. 

Calculation of Jacobian-based ventilation image

4DCT-based ventilation images are computed first by 
performing deformable image registration (DIR) between 
the end-inhale (EI) and end-exhale (EE) phases of the 
4DCT images and then by using the resultant deformation 
vector field (DVF) to create the associated ventilation 
image. An intensity-based B-Spline registration algorithm 
(Elastix, v4.7, Utrecht, Netherlands) was used and the 
accuracy of the registration was inspected for all patients. 
The resulting DVF was used to calculate the Jacobian 
determinant for the deformation map. Volume change was 
quantified by the Jacobian determinant of the DVF which 
was calculated by (9),
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where u (x, y, z) is the displacement vector that maps the 
EI to the EE image. The Jacobian represents the local 
expansion or contraction of the lung tissue. 

Calculation of relative volumetric variation maps 

Lung volume variations correspond to air changes in 
the lung (15). Ventilation values can be calculated by 
the volumetric variation of each tetrahedron element as 
described in our previous work (11-13). Briefly, a cubic 
mesh consisting of 131,614 nodes and 747,384 tetrahedral 
elements was matched to the CT image domain. The 
coordinates (xj, yj, zj) of the vertices of each tetrahedron 
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element j in the mesh were derived. The volume of each 
tetrahedron element was then calculated by the determinant 
of these coordinates,
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DVFs obtained from the B-Spline DIR map were then 
used to move the vertices of the tetrahedron element j 
to their target positions to recalculate the volume of the 
deformed mesh. The relative volumetric variation (Rv) of 
each element j was defined as,

( ) ( ) ( )
( )

EI EE

EE

V j V j
Rv j

V j
−

= 	 [3]

where VEI and VEE are lung volumes at each element j, 
calculated at the end inhalation and end exhalation phase. 
The values of Rv were then interpolated to create a 
ventilation image for the B-spline-based registration using a 
weighted interpolation method (16). 

Functional metrics 

Lung volume was contoured with automatic thresholding 
using a MATLAB-based tool [REGGUI (17)]. Mean lung 
dose (MLD) was calculated for all patients. The dose matrix 
was divided into multiple iso-dose regions: 1 to 5 (V1–5), 5 to 
10 Gy (V5–10), 10 to 20 Gy (V10–20), and higher than 20 Gy 
(V≥20). The functionally weighted mean lung dose (fMLD and 
RvMLD) was calculated by weighting each voxel’s dose with 
their ventilation value as presented in Equation [4] (18-20).  
Percent ventilation within each dose region was defined 
as the ratio of ventilation functions (fJac and Rv) within an 
iso-dose volume and those in the whole lung. fMLD and 
fractional ventilation for V10–20 are calculated respectively by,
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where S represents the voxels in the whole lung region and 
S10–20 denotes the voxels that received dose between 10 to 
20 Gy. fi represents the function in voxel i calculated either 
by fJac or Rv, and Di denotes the dose in voxel i. Using the 
ventilation maps and dose matrix, the functional metrics 
defined in Equation [4] were calculated using MATLAB 
(MathWorks, R2012a).

Functional sub-volume dose metrics 

There is no threshold value reported for defining a high 
ventilation region in ventilation images. In this study, 
the median ventilation of all subjects (0.95) was used to 
segment between high functional and low functional lung. 
For all patients, the volume of lung with ventilation <0.95 
was considered low function and the volume of the lung 
with ventilation ≥0.95 was considered high functional lung. 
These functional sub-volumes were denoted by Flow and 
Fhigh. Within each Fi, the mean dose (MLDlow, MLDhigh) and 
the V1–5, V5–10, V10–20, V≥20 were determined. These metrics 
that create a second set of variables were named “functional 
sub-volume dose metrics”.

Statistical analysis

Coefficient of variation (CoV) was calculated by taking 
the ratio of the standard deviation and the mean of the 
ventilation function. Larger CoV values show higher 
heterogeneity in function, which may reflect the variation 
in lung function (14). In this analysis, receiver operating 
characteristic curves were used to assess the predictive 
power of functional and dosimetric variables in predicting 
dyspnea. 

Spearman’s correlation coefficient between the mean 
Jacobian and Rv-based functions was calculated over all 
patients. An additional method performed for comparing 
the two ventilation functions was the Dice similarity 
coefficient (DSC) index which represents the similarity 
between the upper 55% Jacobian and Rv ventilation 
volumes. DSC between volumes A and B is calculated as,
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Where |A| and |B| represent the cardinal sets of A and 
B. The DSC index values range between 0 and 1. A value of 
1 indicates complete similarity, while an index of 0 indicates 
no similarity between the volumes. 

Results

Predictive power of functional metrics 

The highest dyspnea scores the patients developed was 
grade 2. Seven of the patients had grade 2 after-RT. 
Retrospective studies have shown that for patients treated 
with SBRT, the incidence of toxicity grades larger than 
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grade 3 is only seen in less than 10% of patients (21,22). 
The MLD averaged over all patients was 3.8±1.5 Gy (range, 
1.55–6.8 Gy). Average fMLD and RvMLD for patients with 
dyspnea grade 2 or greater was 3.70 Gy and 4.02 Gy, which 
was greater than 2.50 and 3.22 Gy calculated for patients 
with grade ≤1. 

Table 1 shows the area under the curve (AUC) and the 
associated P values determined from the ROC analysis for 
fJac and Rv-based functional metrics over the whole lung 
region. The P value tests the null hypothesis that the AUC 
equals 0.50 vs. the alternative hypothesis that the AUC≠0.5. 
Both fJac and Rv-based ventilation methods had AUC values 
higher than 0.70 for V1–5, which shows a relatively high 
predictive power. For regions receiving dose above 20 Gy, 
the AUC value for the percent ventilation of the Rv method 
(AUC =0.69) was more predictive of outcome compared to 
the fJac (AUC =0.56). 

Predictive power of functional sub-volume dose metrics 

The high and low ventilation sub-volumes were obtained 
by both ventilation methods (Figure 1) and the dose metrics 
(e.g., mean dose, V1–5, V5–10, V10–20, V>20) within each sub-
volume was calculated. In order to determine the predictive 
power of these metrics, AUCs and P values are reported in 
Table 2 for both ventilation methods. For the fJac ventilation 
image, mean dose in the Fhigh and Flow regions were 3.3±1.6 
and 4.2±2.1 Gy, respectively. For the Rv-based ventilation 
image the mean dose in these regions were 3.4±1.7 and 
3.2±2.7 Gy, respectively. 

AUC values were in general higher for the high 
ventilated regions compared to the low ventilated regions, 
meaning the highly ventilated areas were more influenced 
by radiation dose (Table 2). 

V1–5 has the highest AUC value for both Jacobian and Rv-
based methods, 0.71 and 0.79, respectively. The AUCs were 

Table 1 AUC values and corresponding P values for dose, Jacobian-
based function, and Rv-based function metrics

Metrics
3–6 months

AUC P

MLD 0.72 0.08

fJac-based function metrics

fMLD 0.69 0.13

fV1–5 0.79 0.02

fV5–10 0.67 0.16

fV10–20 0.73 0.06

fV>20 0.56 0.64

Rv-based function metrics

RvMLD 0.69 0.13

RvV1–5 0.80 0.01

RvV5–10 0.52 0.71

RvV10–20 0.71 0.09

RvV>20 0.69 0.12

AUC, area under the curve; MLD, mean lung dose. 

Figure 1 Figure on the left represents the high ventilated lung volume for a representative patient and the figure on the right shows the low 
ventilated lung volume. 

Highly ventilated volume Lung ventilated volume
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highest for the Rv-based method in the Fhigh volumes with 
AUCs up to 0.79. The Rv ventilation method may improve 
the identification and prediction of clinical outcome for 
the purpose of functional avoidance. The AUC values for 
MLDlow were 0.75 and 0.62, which indicate that dose in low 
ventilation regions also have an impact on the outcome.

Comparison of the two ventilation methods and dose-based 
metrics

The Spearman correlation coefficient between the means 
of the two ventilation images over all patients was 0.7 
(P<0.05). The mean DSC index for the upper 55% Jacobian 
and Rv-ventilation volumes was 0.55±0.08, indicating some 
difference in distribution of the two ventilation volumes. 

Average CoV of Jacobian and Rv ventilation over all 
patients was 0.99 and 0.68, respectively, showing a more 
heterogeneous distribution of fJac ventilation within the 
whole lung, while the Rv-based ventilation showed lower 
heterogeneity. An example of their difference is shown in 
Figure 2. Average CoV of 1.05 and 0.70 and lower CoV of 
0.85 and 0.63 were seen in the upper and lower lobes of 
the lung, respectively. These results show that the fJac and 
Rv ventilation in the upper lung are 20% and 10% more 
heterogeneous than the lower lung, respectively. It should 

be mentioned that registration uncertainties generally are 
at the level of voxel size (1–2 mm) (10,12), so fJac function 
calculated at individual voxels are more heterogeneous. 

The registrations between the EI and EE were 
visually inspected for unusual registration errors. The 
displacement grid for one patient is represented in Figure 3, 
where the displacements were largest in regions closer to 
the diaphragm, as expected. Using landmark evaluations, 
the average displacement error over all patients was 
1.97±1.39 mm. 

Figure 4 shows two patients, one with grade 1 dyspnea 
after RT (patient 1) and the other having grade 2 dyspnea 
after RT (patient 2). Patient 1 received a larger dose to the 
higher functional lung region while patient 2 receives a 
higher dose to a lower functional region of the lung and the 
higher ventilated regions of the lung are exposed to lower 
dose (1–5 Gy). MLD was 6.2 Gy for patient 1 and 5.59 Gy 
for patient 2, which are both higher than the average MLD 
over all patients. 

Discussion

While 4DCT images are used mainly for treatment 
planning and dose calculation in radiation therapy, 
ventilation images developed from 4DCT images can help 

Table 2 Dose metrics within high and low functional regions based on the Jacobian and Rv ventilation images

Metrics
Jacobian-based (3–6 months) Rv-based (3–6 months)

AUC P AUC P

Fhigh volume

MLDhigh (3.3±1.6 Gy) 0.70 0.13 0.73 0.07

V1–5 0.71 0.10 0.79 0.02

V5–10 0.67 0.16 0.65 0.23

V10–20 0.65 0.23 0.73 0.06

V>20 0.67 0.17 0.74 0.05

Flow volume

MLDlow (4.2±2.1 Gy) 0.75 0.09 0.62 0.36

V1–5 0.62 0.33 0.50 0.98

V5–10 0.54 0.75 0.53 0.82

V10–20 0.64 0.24 0.65 0.23

V>20 0.61 0.39 0.43 0.60

MLDhigh and MLDlow represent the mean dose within the high and low functional volumes. AUC, area under the curve; MLD, mean lung 
dose.
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render pulmonary function to avoid high ventilation regions 
for treatment of lung cancer patients. Commonly used CT 
density or Jacobian based ventilation imaging techniques 
which directly calculate ventilation in each individual voxel 
(local volume change) are more sensitive to uncertainties of 
deformable registration, and consequently the quality of the 
computed ventilation images depends on the accuracy of 
displacement at each voxel. To reduce the impact of voxel-
wise registration uncertainty, in this study we introduced 
a biomechanical model-based method to calculate the 
volumetric variation of each tetrahedral element rather than 
each voxel. 

The results from the functional metrics showed that 
both fV1–5 and RvV1–5 were more predictive than other 
metrics and the functional metric RvV>20 showed a higher 
predictive power compared to fJac ventilation (fV>20). These 
results were generally in line with studies previously 
reporting AUC values (23). Liu et al. also found V10 to be 
a significant risk factor for radiation -induced lung toxicity 
(RILT) in patients treated with SBRT (24). It should be 
noted that no other study investigated SBRT patients with 
dyspnea as endpoint. Radiation pneumonitis after SBRT is 
fairly uncommon, usually less than 10% (25). In this study 

both ventilation methods showed that the areas receiving 
dose between 1 to 5 Gy are more predictive while a study 
by Fought et al. (26) showed AUC value of 0.70 (P=0.02) 
for fV>20 when predicting for grade 2+ pneumonitis. It is 
suggestive that compared to pneumonitis, dyspnea may be 
more influenced by the lung volume that was exposed to 
relatively lower dose. 

The high and low functioning lung regions were 
segmented and the second set of metrics, functional sub-
volume dose metrics (mean dose, V1–5, V5–10, V10–20, V>20), 
were used. Our results showed a higher predictive power 
for Rv ventilation (higher AUC values) compared to the 
fJac ventilation. We observed that radiation dose to low 
ventilated regions also leads to worse outcome, however, the 
AUCs were much lower than those of the high ventilated 
region. Faught et al. (26) reports that when thresholds 
higher than the 30th percentile are used, the AUC values 
vary by small deviations, ranging between 0.66–0.70. In 
our study, AUC values for Rv ventilation ranged from 
0.43–0.79 and 0.61–0.67 for fJac for predicting grade 2+ 
dyspnea. Our study reported mean dose of 3.3±1.6 Gy in 
the high functioning lung and a MLD of 4.2±2.1 Gy for low 
functioning lung, meaning that for most patients, high dose 
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Figure 2 Ventilation images for a representative patient: (A) the Jacobian-based ventilation image and (B) the Rv-based ventilation image. 

Figure 3 (A) End inhalation phase, (B) end expiration phase, and (C) the resultant deformed image overlaid with its corresponding 
displacement grid. 
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Figure 4 Patient 1 has grade 1 dyspnea after RT, while patient 2 has grade 2 dyspnea after RT. The red arrows point towards the tumor with 
higher surrounding dose distribution. Dose distribution and Jacobian and Rv-based ventilation images are shown for the two patients. 
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was not in the same region as the high ventilation. This 
could be partly since in SBRT, higher dose is mainly focused 
around the tumor region which consists of a smaller volume, 
and ventilation in regions neighboring the tumor are usually 
reduced. However it should be noted that based on the 
linear-quadratic model the dose levels in SBRT (4×12 Gy/ 
fraction) are equal to higher dose levels in conventional 
fractionation (21,27). 

An interesting finding of our study was that in the high 
functional lung region, V1–5 had significantly higher AUC 
values for fJac ventilation and even higher AUC values for Rv 
ventilation. One reason for this observation may be that the 
volume of the functional lung receiving dose between 1 to  
5 Gy is much larger than the volumes with dose higher than 
20 Gy. Thus, the volume with relatively low dose in higher 
functional lung was more predictive of dyspnea. This may 
suggest that the dose as low as 1 Gy could cause dyspnea. 
Previous ventilation studies correlating function to toxicity, 
mostly just report the metrics related to dose regions above 
20 Gy (14,23,28), but this study shows the importance of 
further investing the impact of low dose to high ventilation 
regions. In line with our results, a study by Scheenstra  
et al. (21), measuring the perfusion (SPECT) in patients 
treated with SBRT, showed that perfusion was still observed 
at high dose levels post-SBRT, where no perfusion was 
expected. Compared to 3D-conformal RT, volumetric 
modulated arc therapy/intensity modulated radiation 
therapy requires more monitor units, and therefore more 
attention should be paid to radiation leakage for lung SBRT 
patients.

Considering functional sub-volume dose metrics, 
it is evident that when looking at regions with higher 
function, the Rv ventilation provides higher predictive 
power compared to fJac. In a recent multi-institutional 
study, biomechanical-based DIR showed the highest 
correlation (median Spearman correlation coefficient 
=0.49) with clinical ventilation scans (29). This may indicate 
that biomechanical methods may be more desirable in 
calculating ventilation. Based on the results from the 
heterogeneity test, Rv ventilation technique seems to be 
less spatially variant than the fJac technique in representing 
ventilation (Figure 2). In this study, the same DVF was used 
to reconstruct the ventilation image, but the displacements 
used to calculate each voxel’s ventilation are different for the 
two methods, resulting in differences between fJac and Rv. 
The approach used here is different than that of others (30).  
Previous studies (29) have shown that the correlation 

between clinical ventilation images and the 4DCT-
ventilaion images vary with the choice of 4DCT ventilation 
algorithm, and additionally with the choice of evaluation 
metrics used to compare ventilation distributions.

Several other studies have investigated correlation 
between ventilation metrics and radiation pneumonitis 
(RP), showing that incorporating functional information 
improves the prediction of RP (23,26,31). In our study the 
only endpoint available was dyspnea, and therefore may be 
considered as a limitation because comparable studies are 
not available for comparison. It should also be noted that 
dyspnea may be non-specific and, in some cases, it can be 
caused by other clinical conditions. A study by Paludan  
et al. (32) shows no association between dose and dyspnea 
changes. In this study we did not investigate dyspnea as 
a causative effect of lung ventilation. Rather, we have 
evaluated associations between lung regions with low and 
high ventilation and dyspnea, an outcome related to the 
quality of life of the patient. It should also be mentioned 
that the clinical observations revealed in this study are not 
conclusive and more patient data should be collected in 
future studies. 

To the best of our knowledge this is the first study 
that investigates how dyspnea is correlated to ventilation 
in relatively low dose regions. Two ventilation imaging 
methods were used and compared in this study. The Rv 
ventilation method is less sensitive to registration errors 
and may help quantify region-specific ventilation to avoid 
high functional lung regions during radiation treatment. 
This method could also be used to assess the functional loss 
after RT. However, validation studies need to be performed 
in order to find the correspondence of this method with 
clinical ventilation scans. 

Conclusions

Lung function prior to SBRT treatment was assessed using 
two ventilation imaging techniques with the resultant 
images correlated to clinical outcomes. It was found that 
dose as low as 1–5 Gy delivered to high ventilated areas 
could be related to the incidence of dyspnea. FEM-based 
ventilation images may improve the prediction of clinical 
toxicity for lung SBRT patients.
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