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Introduction

Computed tomography (CT) or cone beam CT (CBCT) 
are volumetric image tools that have been broadly used 
for diagnosing diseases or guiding treatments. X-ray 
radiation exposure associated with them is a clinical 
concern, especially when they are used in a large population 

of healthy patients, e.g., in lung cancer screening, or 
repeatedly used on a patient, e.g., during a long course 
of image-guided radiotherapy treatment. Over the years, 
several dose reduction approaches such as tube-current 
modulation (1-4) and data undersampling (5-10) have 
been developed. In the context of data undersampling, 
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conventional analytical reconstruction approaches are not 
fully capable of addressing the missing data issue, yielding 
artifacts in reconstructed images. In contrast, iterative 
reconstruction techniques motivated by the recent booming 
research of compressive sensing (CS) (11,12) are more 
robust to undersampling and are able to retrieve images 
with satisfactory quality from undersampled data. A number 
of regularization methods in CS have been introduced to 
the CT reconstruction problem, such as total variation (TV) 
(5-9), tight frame (10), and nonlocal means (13-16), etc.

Another motivation for undersampling is to facilitate 
rapid data acquisition and imaging. Along with recent 
advancements in CT technology, for instance energy 
resolved photon-counting detector (17-19), data size in a 
CT projection becomes larger and larger. This leads to the 
challenge to quickly read out acquired data before moving 
to the next projection measurement. Addressing this 
issue is especially important for those clinical applications 
requiring a high temporal resolution, e.g., cardiac imaging. 
While advanced electronics have been designed to improve 
readout speed, it is also highly desirable to explore novel 
directions to reduce projection data size without sacrificing 
quality of reconstructed CT images. 

Within the framework of projection data undersampling, 
it is a natural question regarding the most effective way 
of sampling. Let us first consider data acquisition without 
undersampling. This can be expressed in a simple linear 
system Pf = g, where P is the projection operator that 
maps an image f to a number of densely placed projection 
angles. The undersampling operation corresponds to an 
operator S that has zero or one in its diagonal elements, 
yielding a data acquisition system Ps f = SPf = Sg = gs. Here 

Ps denotes the undersampling projection operator and 
gs the corresponding measurements, a subset of the full 
data vector g. The mathematical properties of Ps depend 
on the specific way of sampling, namely the operator S. 
This in turn governs the difficulty of solving the linear 
system Ps f = gs, namely CT reconstruction. Hence, it is 
interesting to ask which operator S permits the best image 
restoration. Generally speaking, this is a difficult question. 
In this paper, it is our motivation to compare three types 
of undersampling operations, which we hope to shed some 
light to this question of interest.

There are two typical undersampling approaches that 
have been widely discussed in the literature. The first one 
is view undersampling, as illustrated in Figure 1A. Since 
CT data acquisition is typically performed in a view-by-
view fashion, this view undersampling is straightforward in 
practice: simply tuning on X-ray exposure in those views of 
interest. Probably due to this reason, view-undersampling 
approach is the most widely studied undersampling method 
in low-dose CT problems (5-10). The second approach is 
regular ray undersampling, as shown in Figure 1B. While 
X-ray projections are acquired at all the densely placed 
angles, the X-ray source is blocked by a blocker that has 
a periodic pattern. This blocking method was originally 
proposed to address X-ray scatter contamination problem 
in CBCT (20,21). The signals measured in the purposely-
created blocked areas are assumed to be scatter. By 
smoothly interpolating them to the open areas, scatter 
signal can be accurately estimated and then corrected. As 
missing primary data is an apparent problem in this setup, 
iterative reconstruction approach was employed to improve 
reconstructed image quality (22).

Figure 1 Illustration of three undersampling approaches. Blue circles indicate projection angles at which data are acquired.
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There are infinitely many ways of undersampling. While 
it is a difficult problem to theoretically find the best one, 
we will perform a comparison study of three different 
undersampling approaches in this paper. In addition to 
the aforementioned two methods, the third one that will 
be investigated is random ray undersampling, i.e., each 
X-ray line is randomly selected with certain probability, 
as illustrated in Figure 1C. This is motivated by the 
advancements in CS, where randomness introduced in a 
data acquisition process typically helps signal restoration. 
In the rest of this paper, we will compare the properties 
of the projection matrices in these three undersampling 
approaches. 

Methods 

Singular value decomposition (SVD) of a full projection 
operator 

To present theoretical insights of the CT projection 
operator, we consider CT projection under parallel 
projection geometry (Figure 2). The reason for this choice 
is due to the existence of a closed form SVD of the full 
projection operator under this geometry. Current CT 
imaging systems employ fan-beam geometry, as illustrated 
in Figure 1. While this is different from the parallel-beam 
geometry, we hope the analysis performed in the parallel-
beam geometry here captures some insights in the fan-
beam setup. The validity of our analysis is demonstrated to 
some extent by the agreement with numerical experiments 
performed under the fan-beam geometry.

Consider a 2D function f(x) defined in a unit circle {x 
ϵ R2:|x|<1}, a parallel X-ray projection operation to all 
the directions θ ϵ [0, 2π] maps this function into {s, θ} ϵ 
[–1, 1] × [0, 2π) through a linear system Pf = g, where P is 
the full projection operator respect to variables s, θ and 
x. We use the term “full” to denote the situation in which 
measurements at the entire projection domain are made. 
When it comes to undersampling, let us consider a general 
undersampled projection operator Ps = SP, where S = (s, θ) 
is the sampling operator. The function value of S at (s, θ)  
is either 1 or 0 depending on whether the data at the 
coordinate (s, θ) is sampled or not. 

In this paper, one objective is to study SVD forms of 
different undersampling operators. The motivation to pursue 
this SVD form comes from its importance in reconstruction. 
Consider a typical reconstruction problem via the least 
square approach, i.e., solving f = arg min|Pf–g|2, where P is 

a general projection operator, either full or undersampled. 
If P has a SVD form [vi(x), ui(s, θ); σi], the solution to the 

least square problem is simply 
, i

i i
i

g u
f v

σ
=∑  where 

<., .> denotes a dot product in the Euclidean space. This 
naturally implies a reconstruction strategy: (I) decomposing 
the measured projection data g to the basis functions in the 
projection domain by computing the coefficients <g, ui>; 
(II) dividing the coefficients by the corresponding singular 
values σi; and (III) superposing the basic functions vi(x) in the 
image domain with the modified coefficients. Note that the 
least square term is a typical choice to ensure data fidelity in 
many iterative reconstruction approaches.

One particular property of the full projection operator P 
is that it has an SVD representation [vm,l(x), um,l(s, θ); σm,l] (23) 
with 

( ) ( ) ( ) ( )
1 1 20, arg2 2

,
2
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−
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where argx gives angle of the specific points within the unit 

circle ({x ϵ R2:|x|<1}), ( ) ( )
1

2 21w s s= − , ( ) ( ),a b
nP x  is the Jacobi 

polynomial, and Um(s) is Chebyshev polynomial of second 
kind with m>0, –m≤l≤m, and m+l being even. l is the index 
for the projection angle direction and m is the index within 
a projection. Note that vm,l(x) indicates spherical harmonics 
which enforces the orthogonality of v as the singular vector 
in image domain. This decomposition allows reconstructing 
the image in the full projection case via the aforementioned 
strategy (24). 

With this basis, we can express the full projection 
operator P in its matrix representation with matrix elements 
<um,l, Pvn,k>, m,n>0, |l|≤m, and |k|≤n. Denote the matrix as 
R. Its matrix element is (23)
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δ is the Kronecker’s delta function. The property of 

Chebyshev polynomials ( ) ( ) ( ) ,
1

1 2m n m ndsw s U s U s π δ− =∫  is 

used here. This implies that R is diagonal (according to its 
indices given by order of Jacobi polynomials and Chebyshev 
polynomials) with diagonal elements of σm,l. The matrix 
R has a block structure in the sense that l and k are block 
indices corresponding to the projection angle direction and 
m and n are indices within each block associated with the 
direction within a projection angle. 

The upper limits of these indices are determined by the 
highest sampling frequency in the corresponding directions. 
In the continuous setting, the upper limits are infinity. 
When it comes to a realistic scenario with the number of 
projections M in the full sampling case, |l|, |k|≤Mang = 
M/2. Similarly, the finite detector size limits the sampling 
frequency within a projection. This sets an upper limit 
of m≤Mdet with Mdet being set to the number of detector 
elements per projection. Supplementary A presents details 
on the construction of the matrix R.

SVD of an undersampled projection operator

When it comes to an undersampling problem, presence 
of the binary undersampling operator S changes the 
SVD form. For a projection operator Ps, we can write its 
representation Rs under the basis of vm,l(x) and um,l(s, θ)  
corresponding to the full projection operator P in the 
continuous setting. This is analogous to define Rs = UT PsV in 
the matrix case. This is feasible, since {vm,l(x)} and {um,l(x, θ)}  
form complete orthogonal basis sets in the image and the 
projection domains, respectively. Each element of Rs can be 
expressed as

, , , , ,, ,sm l n k m l s n kR u P v=

( ) ( ) ( ) ( ) ( )2 1
0 13/2

2 , .
1

i l k
m nd e dsw s S s U s U s

n
θπ θ θ

π
−

−=
+ ∫ ∫

( ) ( ) ( ) ( ) ( )2 1
0 13/2

2 , .
1

i l k
m nd e dsw s S s U s U s

n
θπ θ θ

π
−

−=
+ ∫ ∫

	 [6]

Rs is no longer diagonal. In the following sections of this 
paper, we focus on the analysis of three commonly used 
undersampling techniques: regular view undersampling, 
regular ray undersampling, and random ray undersampling. 

Regular view undersampling
In the case of regular view undersampling, S(s, θ) is unity 

for 
2

j
j

N
πθ = , j = 1, 2, ..., N. The number of projections is 

N = rM, where r <1 is the radio of undersampling. Hence,  
we have

( ) ( ) ( ) ( )1
, , , 1 13/2

2 2
1

ji l kN
sm l n k j m nR e dsw s U s U s

Mn
θπ

π
−

= −=
+

∑ ∫
( ) ( ) ( ) ( )1

, , , 1 13/2

2 2
1

ji l kN
sm l n k j m nR e dsw s U s U s

Mn
θπ

π
−

= −=
+

∑ ∫
( )

1 ,3/2

2 2
21

jN
n

k
j

i l
me

Mn
θπ π δ

π =
−=

+
∑

	 [7]

This implies that the matrix elements are nonzero only 
when the block indices satisfy l–k = tN, tϵ Z, such that

( )
2

1 1
2 2 2 2j

jitNi l kN N N
j je e N r

M M M

π
θπ π π π−

= == = =∑ ∑ 	 [8]

Since –m≤l≤m and m+l even, we can change the notation 
m→2m+l and n→2n+k. Thus, in the matrix block satisfying 
l–k = tN, the only nonzero elements should satisfy 2m+l 
= 2n+k, i.e., m–n = –tN/2, and the matrix element can be 
obtained by

1/2

, , , 3/2

2 22
22 1 2 1sm l n k

rR r
n k n k

π ππ
π

= =
+ + + +

	 [9]

Apparently, Rs is not a diagonal matrix anymore. 
Compared to R, the matrix Rs is different due to the 
existence of off-diagonal blocks at locations satisfying l–k = 
tN, t ϵ Z. These off-diagonal blocks appear at locations that 
are at distances tN from the diagonal blocks. An immediate 
conclusion is that, the smaller N is, the more off-diagonal 
elements there are, and hence larger difference between Rs 
and R. This is expected, as a more aggressive undersampling 
approach changes the system more significantly. On the 
other hand, when N→∞, the effect of off-diagonal blocks 
can be ignored, as those blocks are far away from the 
diagonal. This corresponds to r→1. Comparing Eq. [9] and 
Eq. [6], we observe that Rs→R and hence Ps→P as r→1.

Regular ray undersampling
In the case of regular ray undersampling, projections at all 
angles are acquired, but a periodic undersampling pattern is 
used within each projection angle. Therefore, S(s, θ) is only 
a function of s. We consider an example case of S(s) =1, if s ϵ 
[na, na+b], n ϵ Z, b<a. Here a can be regarded as the period 
of the regular undersampling pattern and b is the width of 
sampled data within each period. The undersampling ratio  
r = b/a. We express the matrix of Rs as follows,
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This implies that the matrix is of a block diagonal form. 
For the diagonal block, with a change of notation m→2m+l 
and n→2n+k,

( ) ( ) ( ) ( )1
, , , 1 2 21/2

4
2 1sm l n k m l n kR dsw s S s U s U s

n kπ − + +=
+ + ∫

( ) ( ) ( ) ( )1
, , , 1 2 21/2

4
2 1sm l n k m l n kR dsw s S s U s U s

n kπ − + +=
+ + ∫

	 [11]

Compared to the previous view undersampling case that 
generates a lot of non-zero elements at the off-diagonal 
blocks of the matrix, regular view undersampling approach 
only generates off-diagonal elements in the diagonal blocks 
with l = k.

Random ray undersampling
Random ray under-sampling is a strategy that each 
X-ray line is sampled with probability r. The resulting 
undersampling pattern gives a sampling function S(s, θ). 
Again, let us start from the general expression in Eq. [5] but 
with an exchanged order of the two integrals,

( ) ( ) ( ) ( ) ( )1 2
, , , 1 03/2

2 ,
1

i l k
sm l n k m nR dsw s U s U s d S s e

n
θπ θ θ

π
−

−=
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( ) ( ) ( ) ( ) ( )1 2
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2 ,
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n
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π
−

−=
+ ∫ ∫

	[12]

For each fixed s, S(s, θ) is a random variable with binary 
values depending on θ. For the diagonal blocks l = k, 

( ) ( ) ( ) ( )1
, , , 13/2

2
1sm l n l m nR dsw s U s U s f s

nπ −=
+ ∫ 	 [13]

where ( ) ( )2
0 1

2, M
j jf s d S s S

M
π πθ θ =≡ → ∑∫  is a random valued  

function with Sj = S(s, θj). The summation follows binomial 
distribution with mean rM and variance Mr(1–r). It hence 
follows that f(s) has a mean value of 2πr and variance of 

( )24 1r r
M

π − . For simplicity, we approximate f(s) with a 

Gaussian random number following the corresponding 
mean and variance in our numerical evaluation later. The 
integral over s has to be evaluated numerically.

For the off-diagonal blocks, 

( ) ( ) ( ) ( )1
, , , 13/2

2
1sm l n k m nR dsw s U s U s g s

nπ −=
+ ∫ 	 [14]

where ( ) ( )2 ji l k
j jg s S e

M
θπ −≡ ∑  is a complex random variable. 

Its real and imaginary parts are random variables, both with 

mean zero and variance ( )22 1r r
M

π −  (Supplementary B).  

Again, we generate g(s) with its real and imaginary parts 
sampled according to Gaussian distribution. Then we 
numerically compute the matrix elements where numerical 
integration over s is needed. Note that E [ f (s )g (s ) ]=E [ f (s ) ]
E [ g ( s ) ] (Supplementary C), which implies that f(s) and 
g(s) are uncorrelated random variables. Hence, we do not 
consider this correlation when generating off-diagonal 
block matrix elements.

The above deviation shows that the matrix Rs is dense, 
although the off-diagonal elements are small, random 

variables of 
1O
M

 
 
 

, compared to the diagonal elements that 

are of order 1. The impact of randomness is reflected by the 
existence of these small off-diagonal matrix elements. There 
are two special cases to consider: (I) In the limit M→∞, all 

the off-diagonal elements 
, , , 0

M

sm l n kR
→∞

→  and the diagonal 

elements are 
1/2

, , ,
2

1

M

sm l m l
rR

n
π→∞

→
+

. Comparing with Eq. [5], 

it follows M

sR rR
→∞

→ . For a real case with a finite but large 

number of projections, Rs~rR; (II) in the case of r→1, the 
variance of all the matrix elements approaches 0, and Rs→R 
as expected. 

Numerical SVD 

To perform numerical SVD, we consider the discrete case 
with the projection operator represented using matrix. For 
each undersampling case, we generate the corresponding 
matrix representation Rs. All the matrices have the same 
structure, as shown in Supplementary A. We set M = 
2Mang = 200 and Mdet = 250 in our numerical experiments. 
These parameters are smaller than the actual number of 
projections and detectors per projection in a real case. 
However, further increase these values will lead to matrices 
that are too large to handle. We think the parameter values 
are large enough to capture properties of a real case. For 
each matrix, we perform numerical SVD to find matrices W 
and X, such that Rs = XΛsW

T, where Λs is a diagonal matrix 
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with diagonal entries λsi being the singular values of Rs. 
We would like to remark on the following issues. In the 
case of regular ray undersampling, the matrix Rs is block 
diagonalized. Hence, we can perform SVD on each block 
individually, which is computationally less challenging 
compared to other cases. 

After performing SVD, we first compare singular value 

spectra in different cases. Particularly, we examine *

*

SR
R

µ = ,  

where |·|* denotes the matrix nuclear norm. At the continuum 
limit, |P|* = |R|* and |Ps|* = |Rs|*. Hence,

* * * * * *s s max
R P SP S P P R= = ≤ = = 	 [15]

where max imax i
X σ=  gives the largest singular value of 

X. This implies that μ≤1. For a real discrete case, there 
is no guarantee that μ≤1. But we expect this still holds in 
the regime of large Mang and Mdet. We use μ to represent 
perturbation of the undersampling operation on the full 
projection case. The smaller μ is, the more dramatically the 
matrix Rs is altered from R and hence so is Ps compared to 
P. From reconstruction point of view, it is desired to have a 
projection operator Ps close to the matrix P to maintain its 
properties, which means Rs should be also close to R. 

The second quantity we examine is matrix rank ratio 

defined as ( )
( )

( )
( )

rank rank
rank rank

s sR P
R P

δ = = . As the undersampling 

is taken, it is expected that matrix rank is reduced. A large δ 
value indicates less rank reduction caused by undersampling, 
which is a favorable property for solving a linear equation, 
e.g., in the reconstruction problem. 

The third quantity of interest is 
† †

†

S F

F

R R

R
β

−
= , where †X  is 

Moore-Penrose pseudoinverse of a matrix X. When we consider 
least square reconstruction problem for Pf = g, the solution is 

†f P g= . Since 
2 2 2† † † † † †( )T

s s sF F F
P P U R R V R R− = − = − , the 

quantity β characterizes the deviation of the least square 
solution in the undersampled case from the full projection 
case. In terms of computation, 

2† † † † † † † †2T T T
s s s sF

R R tr R R tr R R tr R R     − = + −     
2† † † † † † † †2T T T

s s s sF
R R tr R R tr R R tr R R     − = + −     

2 2 ? †, 2 T
i s i i str R Rλ σ− −  = + −  ∑ 	 [16]

where tr is matrix trace. For the last term, with numerical 
SVD of the matrix Rs = XΛsW

T, it is easily to show that 
† † 1 1T T
s sR R W X− −= Λ Σ , where Σ is a diagonal matrix formed 

by the singular values of R. Hence, β can be evaluated 
numerically. 

In addition, we compare left singular vectors of Ps that 
serve as the basis functions in the image domain for the 
reconstructed CT image. Specifically, with the matrix 
W in the numerical SVD form Rs = XΛsW

T, we compute  
vsi(x) = ΣjWi,jvj(x). Here vj(x) is the left singular vector of the 
full projection operator P, whose expression is given in 
Eqs. [1–4]. 

CT reconstruction experiment

We perform CT reconstruction experiments aiming at 
comparing reconstructed image quality among different 
undersampling approaches at the same undersampling 
ratio. The Forbild head phantom with a resolution of 
256×256 pixels is used. Forward fan-beam projection of 
the phantom is computed at M =360 equiangular projection 
angles covering the 2π range. Within each projection, 384 
equiangular rays are sampled. 

For the regular view undersampling case with a given 
undersampling ratio r≤1, we compute the number of 
projections rM and selected this number of equally spaced 
projection views. For the regular ray undersampling 
case, within each projection for each consecutive a rays, 

we selected b=2 rays, such that the ratio b r
a


. For the 

random ray undersampling case, each ray was selected in 
a random fashion with a probability of r. Once the rays 
for an undersampling case are selected, projection data gs 
corresponding to these selected rays are extracted from the 
already-computed full projection data. Correspondingly, the 
rows in the system matrix A are selected to form the system 
matrix As for the undersampled case. 

We study two reconstruction models. The first model is 
a simple least-square model which can be formulated as a 
quadratic optimization problem

2

2

1arg min
2 s sf

f P f g= − 	 [17]

The global optimal solution of this model can be 
obtained by seeking for f* satisfying 0T T

s s s sP P f P g− = ,  
which can be solved by an iterative linear solver such as 
conjugate gradient (CG) method. The solution to this 
problem is directly connected to the SVD form of the 
system matrix.

The second reconstruction model is based on TV 
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regularization, which solves an optimization problem

2

2 1

1arg min
2 s sf

f P f g fτ= − + ∇ 	 [18]

where τ is a parameter that controls the relative contributions 
of the two terms in the objective function. This parameter 
is manually selected in each case for the best image quality. 

The optimization problem is solved using the Split-
Bregman method (25,26) which has been proved to be 
equivalent to alternating direction method with multiplier 
(ADMM) (27,28). We study this model for two reasons. 
First, in the TV method, we expect the least square term 
produces the underlying structure of an image, and the TV 
term regularizes the image and removes image artifacts. 
Hence, the image quality is largely determined by the 
projection operator properties. Second, the regularized 
method can produce images with much improved image 
quality compared to the non-regularized least square 
method. It is a meaningful study on the performance of the 
state-of-the-art TV-method in the three undersampling 
contexts.

Results

Comparison of projection matrices

μ, δ, and β calculated at different undersampling ratios are 
shown in Figure 3. μ of the random ray undersampling 
case is the highest among all the three cases. This implies 

that for a given undersampling ratio, the random ray 
undersampling preserves the most information. The 
random ray undersampling approach maintains the same 
rank as the representation of full projection, whereas the 
other two operators have substantially reduced rank in 
the regime with a low undersampling ratio. Moreover, the 
random undersampling also achieved the lowest β value, 
implying its advantages in pseudo-inverse calculations. 

Finally, the comparison of left singular vectors of Ps in the 
image domain is depicted in Figure 4. For a fair comparison, 
we select singular vectors in different cases such that they 
have approximately similar singular values. The singular 
vector for the full matrix appeared as a ring pattern. As can 
be seen from vm,l(x) in Eqs. [1–4], the function amplitude 
only depends on the radius. The phase angle variation leads 
to changes of image intensities in real and imaginary parts 
on a ring. For the regular view undersampling, the off-
diagonal elements couple singular modes along the angular 
directions, breaking this ring pattern. In the regular view 
undersampling case, the matrix elements couple between 
modes with in each projection view, leading to strong 
oscillations along the radial direction. This is reflected as 
more obvious ring patterns in the singular vector. Finally, 
although there are off-diagonal elements coupling both 
the angular and the radial directions in the random ray 
undersampling case, since these elements are small, they 
almost have no impact on the singular vector image.

CT reconstruction

After presenting properties of the three different projection 
operators, we examine how they influence the result of 
CT reconstruction. All the experiments are performed at a 
given undersampling ratio of r=0.15. The result of the least-
square model in Eq. [17] is given in Figure 5. Without any 
spatial regularization in the reconstruction model, artifacts 
are quite obvious in all the three cases, but appearing with 
different patterns. It is easy to see the severe ring artifacts 
in the regular ray undersampling case, while serious streak 
artifacts can be observed in the image under the regular 
view undersampling. The artifacts in the random ray 
undersampling case are more noise-like and do not contain 
a very strong pattern.

Reconstruction results for the TV-based model are 
presented in Figure 6. The regularization parameter τ for 
each undersampling scheme was manually tuned for the 
best reconstruction quality. The ground truth phantom is 

Figure 2 Parallel projection geometry considered in our analysis.
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displayed in Figure 6A1,B1 in two display windows. The 
use of a narrow window allows visualization of several low 
contrast objects that are challenging for the reconstruction 
problem. While all the reconstruction results are visually 
close to the ground truth in the wide display window, they 
are dramatically different when being examined in a narrow 
display window. Specifically, the residual artifacts behaved 
differently among undersampling cases. As having been 
commonly observed in many other previous studies, the 
regular view method generates streak artifacts. The regular 
ray undersampling gives rise to ring artifacts, which can be 
ascribed to the strong ring pattern in the singular vectors, 
e.g., in Figure 4C. In contrast, the random ray approach gives 
an artifact that appeared as noise. In addition, Figure 6C  
provides a comparison of line profiles along the line 
indicated by arrow 4 in Figure 6B1. The zoom-in part 
demonstrates that the line profile in the random ray 
undersampling case is closest to that of the ground truth 
image. Quantitatively speaking, random ray undersampling 
approach achieved the highest peak signal-to-noise ratio 
(PSNR) value among all the cases. Figure 6D plots the 

residual error 0 2

0 2

f f
e

f
−

=  as a function of undersampling 

ratio r. The vertical axis is drawn in the logarithmic scale. 
Among the three cases, the curve for the random ray 
undersampling approach stayed at the bottom, indicating 
the better operator properties in this approach for the CT 
reconstruction problem.

Discussion

In this paper, we have studied and compared properties 
of three undersampling operators in CT reconstruction: 
regular view undersampling, regular ray undersampling, 
and random ray undersampling. By representing the 
operators under the basis of singular vectors of the full 
projection operator, we were able to numerically generate 
matrices for each case and perform SVD to investigate their 
properties. It was found that, for a given undersampling 
ratio, the random ray undersampling approach preserves 
the properties of the full projection operator better than 
the other two approaches. This translates to the advantages 
of reconstructing a CT image at a lower error. Numerical 
experiments performed on a Forbild phantom demonstrated 
this fact.

Given the theoretical advantages of random undersampling 

Figure 5 A1 and B1 is the Forbild phantom displayed in a wide window [0, 1.5]; 2–4 are reconstruction results displayed in a narrow window 
[1.03, 1.1] for different undersampling methods with the same undersampling ratio r=0.15.

Ground truth Random ray Regular ray Regular view

A1 A2 A3 A4

B1 B2 B3 B4
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projection operator, an immediate question is how to realize 
such a method in a CT or CBCT system. Here we propose 
two methods. In a CT system, a blocking device similar 
to the binary multi-leaf collimator used in a Tomotherapy 
machine could be employed. With a control signal that 
randomly moves in or out each leaf, random projection data 
could be acquired. In fact, fluence field modulation has been 
proposed and investigated in CT reconstruction regime 

(29,30). Such an idea has been realized on the Tomotherapy 
machine recently (31). The proposed random sampling 
approach generally belongs to the fluence field modulation 
regime, and is hence expected to be achievable in a similar 
fashion. In CBCT system, modulating fluence of individual 
pixel is more challenging. Motivated by the beam blocking 
idea for CBCT scatter estimation, we propose here a 
rotating block design. Specifically, a blocker with a random 

Ground truth
Random ray
PSNR=52.17

Regular ray
PSNR=34.94

Regular view
PSNR=47.09

A1 A2 A3 A4

B1 B2 B3 B4
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Random ray
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Figure 6 Reconstruction results using TV-based model. A1 and B1 are Forbild phantom displayed in a wide window [0, 1.5] and a narrow 
window [1.03, 1.1], respectively; A2,A3,A4 and B2,B3,B4 are reconstruction results for different undersampling methods with the same 
undersampling ratio r=0.15 and different display windows; (C) line profiles (see arrow 4 in B1) generated on ground truth phantom image 
and the reconstruction results; (D) Reconstruction error as a function of undersampling ratio for different undersampling operators.
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blocking pattern (Figure 7) is inserted between the X-ray 
source and the patient (not drawn). It rotates during CBCT 
data acquisition under the control of a motor, yielding 
randomly blocked projections with the blocking pattern 
varying among projections. One step further, it would be 
interesting to apply the random projection technique to 
alternative CT platforms, such as inverse geometry CT 
system (32-34) which allows reducing of data storage and 
imaging dose while the time efficiency of CT imaging is 
boosted.

Main motivation of this study is to introduce randomness 
in CT data acquisition, in the hope that it would lead 
to a system matrix that has better numerical properties 
than the widely used view undersampling or regular ray 
undersampling methods. Another advantage of it in the 
CBCT problem is the feasibility for measurement-based 
scatter estimation and removal. X-ray scatter is the main 
data contamination factor in CBCT, which degrades 
accuracy of reconstructed CBCT intensity as well as 
image contrast. Among many existing methods for scatter 
estimation and removal, beam blocker-based methods 
have demonstrated their great potential (20,21). Yet one 
challenge encountered here was the missing of primary 
data due to beam blocking. The random undersampling 
proposed in this paper is compatible with the beam blocker-
based scatter removal. With randomly blocked X-ray, the 
shadow area allows scatter measurement as in the existing 

approaches. The randomness in data sampling preserves the 
properties of the projection matrix, permitting high quality 
CBCT reconstruction. Feasibility for this idea is currently 
an ongoing study in our group. 

One limitation of the current study is that we used 
parallel-beam geometry for theoretical analysis but fan-
beam geometry for numerical studies. Fan-beam geometry 
is the most widely used CT geometry. But the advantage 
of parallel-beam system is its nice mathematical property, 
especially the explicit formula for SVD, which permits 
the analysis in this paper. Under the condition of full data 
acquisition, the two geometries are equivalent, as the 
projection data can be converted between the two cases via 
re-binning. However, when it comes to undersampling, 
the equivalence does not exist anymore. In our study, we 
hope the analysis performed in the parallel-beam geometry 
captures some insights in the fan-beam setup. This has been 
demonstrated to a certain extent by the agreement between 
results in the numerical studies and the theoretical analysis.
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Supplementary 

A. Construction of R with finite size

Following the notations in Regular view undersampling, k and l are indices for the angular direction and m and n are those 
for the direction within a projection. The matrix R has a block structure with block indices l and k, and indices inside each 
block of m and n (Figure S1). In a realistic scenario, m, n, l and k are all finite with m, n≤Mdet and |l|, |k|≤Mang where Mdet and 
Mang are upper bounds determined by the maximal sampling frequency of detector and projection angles respectively. The 
following constraints still remain: a) m, n>0; b) –m≤l≤m and m+l even; and c) –n≤k≤n and n+k even. For simplicity we change 
the notation m→2m+l and n→2n+k and rewrite the constraints as a) 2m+l>0, 2n+k>0; b) –2m≤l≤2m+l; c) –2n–k≤k≤2n+k. Hence, 
combine the finite-size limit, we have k, l ϵ[–Mang, ..., –1, 0, 1, ...Mang] and 

det det

0 0

, ,
2 2

2 2

m n
m l n l

l km n

M l M km n

≥ ≥ 
 ≥ − ≥ − 
 
 > − > −
 
 − −

≤ ≤ 
 



	 [19]

More precisely, 
2

detM ll m −
− ≤ ≤  for l<0, 0

2
detM lm −

< ≤  for l=0 and 0
2

detM lm −
≤ ≤  for l>0. With these constraints 

ready, the matrix R has the structure shown in Figure S1 and matrix elements in each block are calculated based on Eq. [5]. 
Similarly, the matrices for regular view, regular ray and random ray undersampling cases are structured in the same way, with 
the matrix elements calculated according to Eqs. [7], [10], [12], respectively.

B. Mean value and variance of real and imaginary parts of 
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Here Σj cosqθj =0 was used. Hence, the variance is 
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Figure S1 Matrix structure of R.
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A similar derivation holds for the imaginary part.

C. Proof of E [f (s) g (s)] = E [f (s)] E [g (s)]
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