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Background: Adaptive radiation therapy (ART) is moving into the clinic rapidly. Capability of delineating the 
tumor change as a result of treatment response during treatment delivery is essential for ART. During image-
guided radiation therapy (IGRT), a CT or cone-beam CT is taken at the time of daily setup and the tumor is 
not visible by eye in regions of soft tissue due to low contrast. The scope of this paper is to develop a method 
using a classifier trained on non-contrast CT textures, to estimate the gross tumor volume (GTV) of the day 
(GTVd) from daily (longitudinal) CTs acquired during the course of IGRT when the tumor is not visible.
Methods: CT textures from daily diagnostic-quality CTs routinely acquired during IGRT using an in-
room CT were analyzed. Pretreatment GTV was delineated from pre-RT diagnostic images and populated 
to the first daily CT. Maps of first-order textures (mean, SD, entropy, skewness and kurtosis) and short-
range second-order textures were created from the first daily CT. The classifier was trained to sort voxels 
into GTV and surrounding tissue on subsequent daily CTs over the course of RT. Optimum combinations 
of textures was defined by repeating the training process with all possible texture combinations. The trained 
classifier was used to identify voxels belonging to the GTVd, based on the CT of the day. Posttreatment 
GTV delineated from the post-RT follow-up images was populated to the last daily CT and used to validate 
the last GTVd delineated by the classifier. To demonstrate the concept, the method was described using 
three representative treatment sites, e.g., lung, breast and pancreatic tumors.
Results: Comparing the classifier map generated from a new CT to the initial training CT, the dice 
coefficient (DC) for GTV in lung is 83% on the eighth treatment and 84% on the last. The DC for the 
breast GTV is 56% mid-treatment and 65% at the last treatment. In the case of the pancreas with the least 
in organ tissue contrast, the DC for 4 cases ranges from 21% to 77% for the last treatment compared with 
the post-RT diagnostic CT. The Housdorff distance (HD) ranged from 2.9 to 5.9 mm with the mean GTV 
RECIST dimension of 22.75 mm long by 14.7 mm short.
Conclusions: It is feasible to estimate the general region of the GTV of the day from the daily CT 
acquired during RT, based on CT textures, using a trained voxel classifier algorithm. The obtained GTV 
may be used as a starting point for an accurate GTV delineation in online adaptive replanning. Further study 
with larger patient datasets is required to improve the robustness of the algorithms.
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Introduction

Assessing radiation response [change of gross tumor 
volume (GTV)] during the early stages of radiation therapy 
(RT) allows the remaining RT to be adapted based on the 
patient-specific response, enabling the delivery of adaptive 
RT (ART). CT is by far the most common imaging 
modality of choice for RT planning and delivery guidance, 
tumor staging and therapy response monitoring. Using 
CT imaging to assess response may be subjective and 
underestimate responses in cases with no apparent changes 
in tumor size. CT intensity, measured by Hounsfield unit 
(HU) of attenuation, is stable over time (within 1 HU 
over the course of treatment), quantitative and sufficiently 
sensitive to measure small changes (~0.05% change in tissue 
attenuation coefficient) (1-3). Tumor and surrounding 
normal tissue may have different physical and biological 
properties responding differently to therapy; this is reflected 
in the measured changes in CT texture features. Texture 
analysis of tumors in CT has revealed tumor heterogeneity 
and/or treatment responses (4,5).

During image-guided RT (IGRT), noncontrast CT is 
acquired daily using an in-room CT scanner for patient 
positioning immediately prior to fraction delivery. It has 
been shown changes in certain CT histogram features 
measured from daily CTs are related to the accumulated 
dose and correlated with treatment outcome for pancreas (1),  
lung (6), and head and neck (7) cancers. For pancreatic 
tumors, this variation is small compared with other tumor 
sites (8-10) and does not differentiate between the tumor 
region and the rest of the pancreas.

For ART, it is desirable to measure tumor spatial 
response during RT delivery, e.g., delineating the GTV of 
the day. A potential method is to use image textures to build 
an adequate voxel profile, identifying GTV versus adjacent 
tissue regions within the region of interest (ROI). The aim 
of this work is to develop such a method estimating the 
GTV of the day (GTVd) during the course of RT delivery 
using daily diagnostic-quality CTs acquired with an in-room 
CT for routine IGRT. Methods of classifying voxels with a 
varying level of soft tissue and image texture contrasts, lung, 
breast and pancreas tumors will be used to test and explore 
different algorithms with the primary goal of detecting the 
GTV in the lowest contrast case of pancreatic cancer in 
non-contrast CTs. Classifier algorithms have been used in 
many fields of study and may be employed to determine 
regions of similar textures (11-14). Classification is a two-
step process that involves first, training on a set of data, and 

second, evaluating using a separate set of data not included 
in training (15). The CT dataset closest in time to the 
diagnostic imaging was used as the baseline to define the 
voxel-by-voxel labels on the daily CT. The algorithm is 
validated by comparing location of the tumor region relative 
to the surrounding tissue in both MRI (GTV as identified 
by radiology) and daily CT as identified by the classifier.

Methods

Image acquisition

The daily CTs, acquired with 120 kVp with a voxel size of 
0.98 mm by 0.98 mm and a slice width of 3 mm using an in-
room CT (Definition AS Open, Siemens) during routine 
IGRT were retrospectively analyzed. The planning MRI 
was acquired using a 3T MRI scanner (Verio, Siemens); 
the post-RT/pre-op MRI was obtained on a different 3T 
scanner (GE Discovery MR750). T1, T2 and ADC images 
were used for delineation of the pre-RT GTV and post-RT 
GTV. The contrast-enhanced CT (CCT) was acquired with 
bolus on a scanner (Discovery CT750, GE). Arterial and 
hepatic phases were captured with CT using the intensity 
versus time relationship of the descending aorta.

Contour delineation

The diagnostic GTVs of each site were delineated by the 
radiologist. GTV was delineated from the planning (pre-RT) 
images, MRI and/or (CCT) for the breast and pancreas cases, 
in addition to noncontrast CT for the lung case. This gives 
the model a ground truth against which the classifier may be 
trained and tested before it is used for segmenting daily images. 
The lung is the largest of sites; the sampled lung region is a 
subset of the planning contour due to shorten computational 
time during training and testing. In the case of breast, the 
planning PTV was daily registered and used to define the 
sampled region. For the pancreas, the PTV included the 
pancreas head plus a margin. To look at the texture difference 
only between pancreas and GTV the classifier was restricted to 
the pancreas head and not the whole PTV.

Feature extraction

To amplify the CT information fed into the classifier, textures 
were calculated to include the relationship of local variation 
in the CT intensity. This describes the change in electron 
density and reflects the material change moving from tissue A 
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to tissue B as the tissue mixture changes within the volume of 
a voxel and surrounding neighborhood.

The CTs and contours are exported as DICOMs to be 
read and analyze in Matlab. Textures are calculated for each 
voxel by taking a 2D neighborhood with a radius of 3, 4 and 
5 voxels. Calculated textures include mean, SD, entropy, 
skewness, kurtosis and Grey Level Co-occurrence Matrix 
(homogeneity, heterogeneity, correlation and energy) to 
form the voxel profile further detail is in Table 1 (16). The 
first order is features based on the average pixel values; the 
second order is quantifying the relationship between two 
voxels. These textures quantify features formed by the local 
variation in CT intensity. To classify spatially dependent 
changes, a sampling of neighboring voxels around a selected 
voxel is used to calculate the texture features. This process 
is repeated for every voxel within the ROI.

Model building

We tested a series of classifier algorithms, including the 

simple tree model, support vector machine (SVM) and 
k-nearest neighbor algorithm (KNN). The most basic 
classifier model is a tree model, where the data are split by a 
series of cuts on the variables. SVM is a logistic regression 
and is good when the data has exactly two classes. “An 
SVM classifies data by finding the best hyperplane that separates 
all data points” (17). KNN is a nonparametric method 
for classification where the input consists of the k closest 
training examples in the feature (18). The classification 
application included in the MATLAB (R2017a) Statistics 
and Machine Learning Toolbox was used to build and train 
these classifiers.

The post-RT MRI or CCT is used to delineate the post-
RT GTV used to verify the reliability and accuracy of the 
model’s prediction. The pre/post-RT images are locally 
registered to the closest in time daily CT images (first or 
last). Although deformable registration works on many sites, 
deformable registration with the pancreas was inaccurate due 
to the blurring effects at the edge of the pancreas. Due to this 
only local box based rigid registration was used for all cases. 

Table 1 Summary of the texture used to build the voxel profile. All functions are taken from the Image Processing Toolbox in MATLAB

Texture Measure of Equation

Entropy Randomness, sensitive to noise and standard deviation 2logp p∗∑
Kurtosis Sharpness of distribution, how outlier prone ( )4

4

p x µ
σ
−

Skewness Asymmetry about the mean ( )3

3

p x µ
σ
−

GLCM The probability of intensity combinations within a given distance 
and direction

GLCM contrast Local variation in intensity contrast between a pixel and neighbor ( )2

,
,

i j
i j p i j−∑

GLCM correlation The joint probability occurrence of the specified pixel pairs ( )( ) ( )
,

,
i j i j

i i j j
p i j

µ µ
σ σ

− −
∑

GLCM energy Uniformity, sum of the squared elements ( )2

,
,

i j
p i j∑

GLCM 
homogeneity

Closeness of the GLCM elements to the GLCM diagonal ( )
,

,
1i j

p i j
i j+ −∑
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Using the blood vessels surrounding the pancreas head to 
rigidly register the diagnostic imaging to the daily CT was 
both reliable and re-creatable. Results of registration are used 
to label the voxel features as GTV or other on the daily CT 
and are utilized for training a model predicting tissue type on 
a voxel-by-voxel basis during RT delivery.

Fifty percent of the voxel profiles are reserved for evaluating 
the model; the remaining 50% are used for training. Texture 
selection and classifier selection is included together. The 
classifier is trained initially over multiple classifier algorithms 
with all textures included to select the best classifier algorithm. 
Once selected, all combinations of textures are evaluated to 
maximize the accuracy of the classifier. The trained classifier 
then is used to process a new daily CT and predict the GTVd, 
solely based on the trained classifier.

Test patient data

For a given patient, the same CT protocol was used to 
acquire the daily CTs. Contours of pre-RT GTVs were 
delineated from the planning images and were populated 
to the first daily CT based on local registration using MIM 
(v6.7). Once trained, the classifier is exported and saved to 

be applied to a new daily CT. A new CT is used to generate 
new textures and read into the final classifier, to output 
a label for each voxel forming predicted GTVd. Model-
predicted GTVd on the last daily CT was compared with 
that from the post-RT images (MRI or CCT).

The high-texture contrast case, lung cancer, was treated 
with 45 Gy in 15 fractions. Because of the high contrast, 
it was possible to delineate the GTVd using thresholding 
on a daily CT. No pre- and post-RT images were needed 
for the lung case. The mean and median CT numbers 
(CTN) were excluded from the classifier’s list of features as 
CTN threshold was used in delineating GTV. The patient 
CT image in Figure 1A shows the GTV contour and the 
surrounding lung sample used in the feature map calculation 
and voxel labeling (GTV and LUNG). In Figure 1B, 3D plots 
of map features give an idea of the cross-feature dependence 
and the multidimensional separation the classifier is 
attempting to fit between GTV and surrounding lung.

The medium-texture contrast case, breast cancer, was 
treated with preoperative RT of 30 Gy in 5 fractions 
followed by lumpectomy. The GTV was generated from the 
planning MRI and was populated to the first daily CT based 
on local registration. The GTVs were drawn using the T1, 

Figure 1 CT slices of the middle of the identified tumor within the right lung. Series (A) is showing the GTV and the sample lung region 
used for the classifier. Series (B) shows the multidimensional relationship between the textures. GTV, gross tumor volume.
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Figure 2 Center slice of the identified tumor within the breast tissue. The T1 on the right is registered to the first daily CT on the left (A). 
The blue contour is the GTV and the red arrows mark the gland structure. Series (B) shows the multidimensional relationship between the 
textures (blue is GTV, red is gland, and yellow is fat). GTV, gross tumor volume.

where the tumor is seen as hyperintense/heterogeneous and 
the normal breast as a spider web of hyper/hypo-intense 
areas. Figure 2A shows the first daily CT with the GTV; 
the breast glands of the day were included in the classifier 
training and Figure 2B shows the texture separation in 
3D. Using noncontrast CT, the gland and tumor is not 
differentiable by eye.

The low-texture contrast cases, pancreatic cancer, was 
treated with chemotherapy and chemoradiation therapy 
(CRT) before surgery. The radiation dose was 50.4 Gy in 
28 fractions. The pancreatic head was contoured based on 
the baseline CCT arterial and hepatic phase CTs acquired 
prior to chemo and post-CRT. This was necessary to 
avoid including the superior mesenteric vein and superior 
mesenteric artery within the pancreatic head, which would 
impact the results due to blood having a slightly higher HU 
value than the adjacent pancreas. In Figure 3A, the contours 
of pancreas head and initial (pre-CRT) GTV are shown 
on the first daily CT. The region between the pre-chemo 
and pre-CRT GTVs contains fibrosis and is not expected 
to return structurally to normal pancreas tissue. Figure 3B 

shows the relationship between textures is dependent on the 
tissue of interest.

Model evaluation

Dice coefficient (DC) of the model-predicted GTV with 
the known GTV is used to quantify overlap. The DC is 
the percent of total overlap between two contours to gauge 
whether the predicted GTV is within the same region of 
the ROI. Hausdorff distance (HD) is a measure of how 
far the edges of the predicted and known GTV are. The 
HD for two similarly centered contours is a measure of 
the expansion needed to maximize overlap. For two offset 
contours, the minimum HD is related to the contour 
dimension and centroid distance.

Results

Lung tumor texture classification

The best fit classifier resulted in an accuracy of 100% 
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Figure 3 The identified tumor within the pancreas head and texture features. Series (A) is the CT slices of the identified tumor within the 
pancreas head and series (B) shows the multidimensional relationship between the textures GTV, fibrosis, and normal pancreas tissue. (B) 
Shows the multidimensional relationship between the textures (blue is GTV, red is fibrosis, and yellow is normal pancreas tissue). GTV, 
gross tumor volume.

using an SVM polynomial. The first day was used for 
training; eighth and fifteenth days were used for evaluation. 
The classifier generated map for the eighth day is shown 
in Figure 4A, along with the daily CT used for texture 
calculation is shown in Figure 4B. Figure 4C shows the 
classifier generated map of the last day of RT CT along 
with the individual CT slices in Figure 4D. The DC for 
the last day is 84% and eighth day is 83%. In addition, the 
Hausdorff distance is 1.7 and 1.5 mm for the corresponding 
days. This is comparable to about 1.5 voxels in the x or y 
direction or one voxel in the z direction. Table 2 summarizes 
the final textural combination. In this case, the model 
settled on a combination of GLCM with standard deviation, 
entropy, kurtosis, and skewness in all three grid sizes for the 
textural maps.

Breast tumor texture classification

The classifier was trained for regions of fat, gland and 
GTV. Cross-feature relationships of these regions are 
shown previously in Figure 2B. The best-fit classifier has 
an accuracy of 99% for the complex tree and SVM cubic 

algorithms. The final predictive textures shown in Table 2  
are primarily from the same map grid calculated using 
a 4-voxel radius. The DC for the mid and last day of 
treatment was 56% and 65%; HDs are 1.4 and 2.2 mm. 
Figure 5A shows the classifier output on the third treatment 
compared to the CT slice used to generate the feature 
map, in Figure 5B. Figure 5C,D show the comparison of the 
classifier output and the CT for the seventh fraction. The 
time between the diagnostic image and the first daily CT, to 
define the test data, is 7 days. After RT the final diagnostic 
imaging used to delineate the final GTV and register back 
to the last daily CT was 29 days after the last treatment.

Pancreas tumor texture classification

Texture separation in the pancreas case is less pronounced 
than the previous two sites, the accuracy of the classifier is 
still high (97% accuracy), as shown previously in Figure 3B 
by the high degree of overlap in the tissues. The overlap 
in the textures is seen in the longer list of textures used 
in the final classifier, which included 24 textures in total 
(Table 3). Using the first-day CT for training, the DC of 
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Figure 4 The slice by slice comparison of the classifier identified GTV and the seen in CT GTV for lung. Series (A) is generated from the 
CT taken on the 8th day of RT (B). Series (C) is generated from the CT taken on the 15th day of RT (D). GTV, gross tumor volume.

the best-case example patient is 61% between the last CT 
and post-CRT GTV. In addition to the DC, the HD was 
calculated to be 3.2 mm. Working backwards and using the 
last daily CT to train the classifier, and then comparing it 
with the known GTV of the first day, the dice coefficient 
is 63% with an HD of 2.1 mm. In the context of treatment 
planning, adding a PTV margin of 3 mm on the GTV may 
account for the HD. Alternatively, the classifier was run 

only in the region of pre-chemo and pre-RT GTV with the 
remaining pancreas expected to be only normal tissue. The 
DC is 77% for the last treatment compared with the post-
CRT diagnostic imaging with an HD of 1.7 mm. Figure 6A 
is the classifier output and Figure 6B is the corresponding 
CT contours, where dimensions of a voxel are 0.98 by 
0.98 by 3 mm. For resectable and borderline resectable, 
the initial chemo shrinks the tumor to some degree and 
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Table 2 Parameters of the final trained classifiers for lung and breast. The name of the texture is followed by the sample size around a given voxel 
to calculate the textural maps

Site Classifier model Textures Training points

Lung SVM-polynomial GLCM contrast: 4, GLCM homogeneity: 4, GLCM energy: 4, standard 
deviation: 4, entropy: 4, kurtosis: 4, skewness: 4, GLCM contrast: 
3, GLCM homogeneity: 3, GLCM energy: 3, standard deviation: 2, 
entropy: 2, kurtosis: 2, skewness: 2

6,767 GTV, 44,111 lung

Breast Complex tree,  
SVM-cubic

GLCM contrast: 4, GLCM homogeneity: 4, mean: 4, median: 4, 
standard deviation: 4, entropy: 4, median: 3

771 GTV, 4,941 gland, 
27,864 fat

SVM, support vector machine; GTV, gross tumor volume.

the progression of the disease after chemo is within the 
bounds of the initial GTV. From the pre-RT diagnostic 
imaging to the first treatment is 5 days and expect little to 
no detectable change between the two images. Following 
treatment, the final diagnostic imaging was taken 22 days 
after the last RT fraction. Due to posttreatment changes, 
the final GTV is only an estimate of the GTV on the final 
fraction. The results for all 4 cases are included in Table 4. 
It is seen that, although the DCs are relatively small due 
to the small GTVs, the HDs however reflect the classifier 
defined GTVs are in the regions of the known GTVs when 
comparing to the GTV dimensions as defined by RECIST.

Discussion

The learning curve of a classifier depends on classification 
method, complexity of the classifier and separation of 
features between distinct groups. In the context of training 
for a variety of pre-existing conditions with pancreatic 
cancer (a diabetic pancreas vs. a healthy pancreas vs. a 
pancreas with intraductal papillary mucinous neoplasm), 
variance will greatly influence the classifier performance. 
In addition, pancreatic cancers are characterized by dense 
fibrous desmoplastic stroma and relatively sparse resulting 
in an abundance of fibrosis in both the GTV and the 
treatment response region. Both large and broad ranges of 
cases are needed to train the classifier, along with cases for 
model validation. As the complexity and feature overlap 
increases, so does the need for independent cases. Another 
aspect of classification is potential bias due to model setup. 
In this case, contour variation and alignment of planning 
images to daily CTs could potentially introduce a bias 
in training and validation sets. Ideally, the training and 
validation sets would include a variety of cases with multiple 
versions of contours. The scope of this analysis does not 
cover more advanced models as deep learning, which 

requires much larger data sets for training and evaluation 
due to the variation of the in the treatment response and 
the pre-treatment state of the pancreas.

For the highest-texture contrast case, lung, a classifier 
was able to identify the GTV on a consistent basis due 
to distinct separation in the CT features. For the breast 
case, classification was sensitive to the separation in CT 
features between fat to gland, gland to tumor, and fat to 
tumor, as seen in the 3D plots of features. For pancreas, 
the lowest-contrast case investigated is a complex organ 
with a lobular structure; it is almost indistinguishable 
from surrounding pancreatic tissue on noncontrast CT. 
Confirmed by pathology, as the tumor volume forms and 
progresses, the natural structure of the pancreas is altered, 
and the degree of homogeneity increases. Although the 
overlap in features is great, this study shows it is possible 
to identify tumor regions with CT textures. For practical 
purposes, the classifier should not be patient specific. To 
do this, the classifier training and evaluation will include 
the voxel profiles of many patients. The number of patients 
needed to segment a new patient not used in the training 
data is dependent on the classification method, complexity 
of the classifier and how well the groups are separated. 
For a high-contrast site, such as lung, a simple classifier 
may be employed on a small cohort of patients with a 
short list of textures to accurately model the group’s GTV 
and surrounding lung. As the contrast between regions 
decreases, more textures are needed to model the different 
groups. The number of independent datasets (patients) 
needs to be greater than the number of variates (textures, 
patient image variation and site-related variation). For the 
pancreas, the variation in the data is related to noise in CT 
and differences in the preexisting pancreas. In comparison 
to lung or breast, many more pancreas cases will be needed 
to build a complete model.

Utility of a classifier that is trained on a dataset is highly 
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Figure 5 The slice by slice comparison of the Classifier identified GTV and the seen in CT GTV for breast. Series (B) and (D) show the 
corresponding CT slices versus the trained classifier output in (A) and (C), on the 3rd and 7th treatment respectively. Neither CTs were used 
in the training. GTV, gross tumor volume.

dependent on the quality of the data, in this case, CT images. 
All of the study sets in this investigation came from the 
same scanner using the same reconstruction, thus, machine-
dependent variation in image quality should be minimal. 
As previously noted, the time stability of the mean CTN 
of this scanner has been reported and is on the order of +/−  

1 MU over the length of a fractionated therapy plan (1). CT 
textures are derived from CTN and the machine-related 
textural stability has also been investigated (2).

Performance of the classifier strongly depends on the 
site under investigation. Image contrast between the target 
and surrounding tissue is the highest in lung and the lowest 
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Figure 6 The slice by slice comparison of the Classifier identified GTV and the seen in CT GTV for pancreas. (A) is the classifier generated 
maps generated from the CT slices of the final fraction CT (B). The classifier identifies the potential GTV in blue, yellow is the region 
identified to be normal or fibrotic tissues. GTV, gross tumor volume.

Table 3 Parameters of the final trained classifiers for pancreas. The name of the texture is followed by the sample size around a given voxel to 
calculate the textural maps

Site Classifier model Textures Training points

Pancreas 
(first day)

SVM-cubic GLCM contrast: 4, GLCM homogeneity: 4, GLCM energy: 4, mean: 4, median: 
4, standard deviation: 4, entropy: 4, skewness: 4, GLCM contrast: 3, GLCM 
homogeneity: 3, GLCM energy: 3, mean: 3, median: 3, standard deviation: 3, 
entropy: 3, skewness: 3, GLCM contrast: 2, GLCM homogeneity: 2, GLCM 
energy: 2, mean: 2, median: 2, standard deviation: 2, entropy: 2, skewness: 2

925 GTV, 887 
fibrosis, 752 
pancreas

Pancreas 
(last day)

SVM-cubic GLCM contrast: 4, GLCM energy: 4, mean: 4, median: 4, standard deviation: 
4, entropy: 4, skewness: 4, GLCM contrast: 3, GLCM homogeneity: 3, GLCM 
energy: 3, mean: 3, median: 3, standard deviation: 3, entropy: 3, kurtosis: 3, 
skewness: 3, GLCM contrast: 2, GLCM homogeneity: 2, GLCM energy: 2, mean: 
2, median: 2, standard deviation: 2, entropy: 2, kurtosis: 2

643 GTV, 780 
fibrosis, 853 
pancreas

SVM, support vector machine; GTV, gross tumor volume.
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in pancreas, impacting the effectiveness of the classifier 
to identify the target. Image contrast isn’t the only image 
quality metric to consider. Breathing motion degrades 
spatial resolution because in the stationary 3DCT each 
voxel will contain all tissue types that moved through a 
voxel at the time of acquisition (19), obscuring the true 
textures of the target and surrounding tissues. Breathing 
motion is both location dependent and patient dependent. 
In comparison to lung and pancreas patients, the breathing-
related motion in the breast is negligible.

Image noise (treatment-site and patient specific) is a type 
of CT texture, which is present in all study sets and will 
confound classification. Noise in the image is treatment-
site and patient specific. No automatic exposure protocol 
was used to modulate the imaging dose based on the patient 
width. A larger patient in this study would have more 
noise in their image due to reduced counting statistics 
from increased X-ray attenuation. Impact of increased 
attenuation is also treatment-site specific as an image of a 
prone breast will benefit from less X-ray attenuation than a 
pancreas, which is roughly at the center of the abdomen.

A factor that cannot be ruled out in the case of breast 
and pancreas, the time difference between the dGTV and 
the final GTV as defined by the diagnostic imaging. As it 
is a prospective study, the comparison is limited and does 
not account for the settling from the treatment response. 
This shows the importance of training on data set with the 
diagnostic imaging as close in time as possible.

Texture calculated as a map gives the 3D trend in the 
intensity of an image. Comparing textures is a way to 
delineate GTV of the day during the course of RT delivery 
for adaptive RT. Larger studies to develop the utility of 
using CT texture to quantify and monitor GTV changes in 
the breast and pancreas are underway. Adaptive planning 
hinges on the ability to delineate the GTV from the daily 

RT imaging. Although this is straight forward for high 
contrast cases, this is a challenge in low contrast regions. By 
taking the standard daily imaging available and calculating 
the texture of the regions, it is possible to build a daily 
GTV model. This is useful in the cases where the GTV is 
not visible and the organ is expected to go through changes 
daily.
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