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Introduction

The thyroid gland is one of the most important organs in 
the human body. It releases thyroid hormones to regulate 
metabolic functions such as heart rate, cardiac output and 
heat regulation (1). A lump within the thyroid is called a 
thyroid nodule because of the abnormal growth of thyroid 
cells. Although there are up to 70% of adults identified 

with thyroid nodules in ultrasound examinations, a small 
proportion of thyroid nodules (<7%) are diagnosed to 
be malignant (2). The major challenge is the differential 
diagnosis of benign or malignant thyroid nodules. A precise 
diagnosis can optimize patient health care and avoid 
unnecessary surgical treatment (3).

The extensive efforts have been made to develop 
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evaluation methods for thyroid nodule diagnosis. Invasive 
biopsy and noninvasive imaging technique are the two main 
approaches implemented in the clinic recently. The former 
is a fine-needle aspiration biopsy (FNAB) (4). In FNAB, a 
thin needle is inserted into the thyroid nodule, and a sample 
of cells is collected and examined. It is currently the most 
reliable diagnostic tool for determining benign or malignant 
thyroid nodules (5). However, there are still a few cases 
reported as indeterminateness if the target samples are not 
well located during the operation in FNAB. Furthermore, it 
may cause tumor transportation and hematoma (6). Hence, 
FNAB is recommended for those nodules with intermediate 
or high suspicion patterns (7).

The latter are medical imaging techniques which 
provide the functional and anatomic information of the 
thyroid and play a very promising role in the evaluation of 
thyroid nodules (8). Cross-sectional imaging techniques 
including ultrasonography (USG), magnetic resonance 
imaging (MRI), positron emission tomography (PET), 
and computed tomography (CT) could be used to detect 
incidental thyroid nodules (ITNs) and evaluate the 
thyroid nodules (9-11). USG is a highly sensitive imaging 
modality for detecting small thyroid nodule (12). The 
characteristics of thyroid nodules in ultrasound, such as 
solid component, hypoechogenicity, irregular margins, 
micro-calcifications, and taller-than-wide shape, can show 
a significant relationship with nodule malignancy (12). 
Accordingly, the ultrasound computer-aided diagnosis 
(CAD) systems have been developed to contour thyroid 
nodules and make an objective differentiation between 
benign and malignant thyroid lesions (13-15). MRI plays 
an adjuvant role in clinical practice (8). A recent study 
revealed that quantitative diffusion-weighted MRI could 
be a promising noninvasive method to identify thyroid 
cancer (16). Fluorine-18-Fluorodeoxyglucose (FDG) PET 
is well-established in patients with metastasis, particularly in 
patients presenting elevated serum thyroglobulin levels and 
negative radioiodine during whole-body scans (17).

CT is sensitive to detect intra-glandular calcification (8).  
In clinical practice, radiologists visually inspect a lot of 
thyroid CT images, which is tedious and error-prone. 
Some subtle CT features, like micro-calcification, could be 
missed in visual inspection (18). To resolve these issues, we 
have developed a CAD system to differentiate the nodule 
from the normal thyroid CT images (19). However, the 
limitation of our previous system is that it has no functions 
in identifying the nodule malignancy.

In this retrospective study, we proposed a CAD system 

to evaluate the thyroid nodules in CT images. In the 
preprocessing, we used a median filter to reduce noises and 
delineated the contour of the thyroid manually. After that, 
seventeen features were extracted from thyroid regions, 
including first-order statistics and gray level co-occurrence 
matrix (GLCM) texture features. To identify the benign 
and malignant nodules, we used a support vector machine 
(SVM), linear discriminant analysis, random forest, and 
bootstrap aggregating (bagging) to evaluate the system’s 
performance. Based on the experimental results, our 
system performs well in the cross-validation, indicating its 
potential to release the radiologists’ burden and improve 
the malignancy diagnosis of thyroid nodules.

Methods

Thyroid database

In this study, the retrospective database includes CT images, 
radiological and pathological diagnoses from February 2015 
to January 2016. The consents of all patients were waived in 
this retrospective study.

Ninety-eight thyroid nodules (52 benign; 46 malignant) 
were selected from 90 patients (age: 15–80 years) which 
were scanned in the neck or chest in Ruian People Hospital 
(Zhejiang, China). All images were obtained using a 
16-channel Helical CT scanner (Sensation, Siemens 
Medical Solution). The imaging parameters were set as 
follows: tube voltage, 120 kVp; tube current, 300 mA; 
detector configuration, 16×0.6 mm; slice thickness and 
cross-sectional distance, 3 mm; pitch, 1; rotation time, 0.5 s;  
B31 standard of reconstruction kernel. All patients lay in 
supine position. Eighty-six cases (96%) were scanned from 
the pharynx oralis to the upper edge of the clavicle, and four 
cases (4%) were scanned to tracheal bifurcation.

From each nodule, one to three images were selected. 
Moreover, the related regions of interest were delineated by 
two senior radiologists. The ROIs were confirmed by both 
radiologists. One ROI was extracted if the nodule diameter 
is smaller than 3 mm, and two or three ROIs were extracted 
while the nodule diameter is over 3 mm. Subsequently, 
122 benign and 115 malignant ROIs are determined, 
respectively. The number of thyroid nodules and CT 
images in our database is shown in Table 1.

After the surgical treatments, an experienced pathologist 
examined the histologic section of lesions and defined 
the benign or malignancy, which is regarded as the gold 
standard for this study. In our database, the benign lesions 
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include goiter, thyroiditis, and thyroid adenoma. Malignant 
nodules include papillary and follicular thyroid cancer.

Proposed method

After setting up the database, we applied the following 
image-processing algorithm to evaluate the thyroid lesions. 
As shown in Figure 1, the algorithm mainly consists of the 
following steps: image preprocessing, feature extraction in 
2D images, model training, and evaluation. We describe the 
details of these steps as below.

Preprocessing

The quality of CT images may be slightly degraded by the 
quantum noise, which is associated with the number of 
photons contributed to the reconstructed image (20). The 
noise can cause heterogeneity in CT images, which may 
cover the underlying biological heterogeneity. To reduce the 
quantum noise, a median filter with a matrix of 3×3 size was 
used. Then, an experienced radiologist manually delineated 
the contour of the thyroid. The thyroid gland has two lobes 
that lie on each side of the trachea. In our study, we focused 
on the thyroid lobe with nodules, which were identified in 
pathological examinations. Figure 2 shows the delineated 
thyroid CT images.

Feature extraction

Previous studies found that multiple punctate calcifications 

and solitary calcified nodules may represent an increased 
risk for thyroid malignancy (21). For thyroid nodules, spatial 
heterogeneity is a well-recognized feature that reflects 
the area of necrosis, hemorrhage, and calcification (22).  
To quantify the heterogeneity, we chose seventeen texture 
features, including first order and second order statistics 
based on the performance of features in our previous 
research (19).

First order statistics are computed from the image 
histogram, which measures the probability of a certain 
pixel occurring in an image. In our study, we used average 
intensity, standard deviation, uniformity, and entropy to 
measure the heterogeneity. The average intensity is the 
mean intensity of all the pixels in ROI, which correlates 
mean attenuation value in the thyroid. Standard deviation 
describes the off variation from the average intensity. 
Uniformity measures the distribution of intensity level, 
which is defined as,
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where p(l) is the probability of the occurrence of the gray 
level l, and L is the maximum intensity in the image.

Entropy describes the randomness and irregularity of the 
pixel intensities. Image entropy is defined as,
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Where pi is the probability that the pixel intensity is 
equal to i, and N is the maximum intensity in the image. In 

Table 1 The thyroid database in our study

Categories
Benign Malignant

Goiter Thyroiditis Thyroid adenoma Papillary thyroid cancer Follicular thyroid cancer

Lesions 45 4 3 45 1

Images 107 9 6 114 1

Figure 1 The workflow of the proposed computer aided thyroid diagnosis system.
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our case, if multiple punctate calcifications appear in the 
thyroid, average intensity, standard deviation, and entropy 
will increase, and uniformity will decrease.

First-order statistics measure the gray level distribution 
in the image. However, they do not provide information 
about the neighborhood relationship among pixels. GLCM 
is a widely used method in second-order statistics (23). 
Given an image I(x, y), the co-occurrence matrix Pθ, d(i, j)
describes how frequently two pixels with gray-level i and j 
will appear in the window separated by a certain distance d 
in a certain angle θ.
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where m, n are the numbers of columns and rows in the 
image I, and θ is the angle between the referenced pixel and 
the adjacent pixel.

There are 13 texture features extracted from the 
GLCM matrix Pθ, d(i, j), including angle second moment, 
correlation, entropy, contrast, inverse difference moment, 
sum average, sum entropy, sum variance, sum square, 
difference variance, difference entropy, information measure 
of correlation 1, and information measure of correlation 
2 (23). We calculated the GLCMs with four different 
orientations which represent horizontal, diagonal, vertical 
and anti-diagonal by 0o, 45o, 90o and 135o respectively. To 

achieve rotation invariant textures, the thirteen GLCM 
features in four directions were averaged. All seventeen 
features, including first order and second order statistics, 
were normalized and ranged in [0,1] using min-max scaling 
method via the following equation:
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norm

max min

f ff
f f

−
=

− 	
 
[4]

Classification

The images in our thyroid database belong to two different 
groups: benign and malignant thyroid nodules. The goal 
of the classification task is to classify new test samples 
with the prediction model generated based on the training 
samples. Regarding the complexity of different supervised 
methods, we used LDA, SVM, bagging, and random 
forest to identify the malignancy of thyroid nodules. The 
computational requirements of LDA are not too high, 
but it may have numerical problems in high-dimensional 
classification (24). SVM is effective in nonlinear and high 
dimensional spaces (25), but it could be inefficient to train 
in large-scale problems (26). Bagging and random forest 
can handle high dimensional spaces as well as large numbers 
of training samples. However, they use a group of “weak 
learners” to form a “strong learner”, so the performance 
could rely on the selected classifiers and parameters (27).

LDA is a well-established classification method 

Figure 2 Thyroid CT images for benign and malignant nodules with delineated thyroid contour (white line). (A) Goiter; (B) thyroiditis;  
(C) thyroid adenoma; (D) papillary thyroid cancer; (E) follicular thyroid cancer. The red arrows indicate the diseased regions.
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(28,29). It is based on the concept of searching for a linear 
combination of the feature variables that best separates two 
classes. The discriminant function is defined as,

0
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= +∑
 	

[5]

where fi is the value of the ith feature, ai is the coefficient 
estimated from the training data, and n is the number of 
the features. LDA computes the optimal combination 
by minimizing the distance between the same classes 
and maximizing the distance between different classes 
simultaneously. The threshold of the discriminant function is 
placed at the midpoint between the mean values of two classes.

SVM is a classical supervised learning method that 
performs classification tasks by constructing hyper-plane 
in multidimensional space (29,30). SVM constructs the 
optimal separation hyper-plane to data that is linearly 
inseparable, by mapping the data into a high-dimensional 
feature space in which they can be separated linearly. Given 
a set of training data {(xi, yi)}

N
i=1, SVM seeks a separating 

hyperplane with the maximum margin. Using a soft-margin, 
we obtain the primal problem for SVM:
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Where ξi is the slack variable, Φ is the mapping function, 
w is a normal vector, and C is the parameter which 
determines the tradeoff between a large margin and less 
constrained violation. In this study, we used the radial basis 
function (RBF) kernel as the mapping function and grid 
search to estimate the parameters.

Bootstrap aggregating is a meta-algorithm that pools 
decisions from multiple classifiers (31,32). Bagging method 
takes subsamples with replacement from the initial training 
set Tn to generate multiple input sets Tb, (b=1,2,…,B). Each 
input set is used to train a different component of the base 
classifier Cb, (b=1,2,…,B). To predict an unseen test sample 
x, we run the input through these individual classifiers, and 
the final decision is obtained via majority vote.
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where Y is the label set, and I(·) is the indicator function 
which outputs 1 if the inner expression is true, otherwise 
which outputs 0.

Random forest (RF) is an ensemble learning method 
based on decision tree (33). RF constructs a multitude of 
decision trees with training data and combines their outputs 

for the final prediction. Each decision tree in a random 
forest is learned on a random bootstrap sample. At each 
node, a subset of features is randomly selected out of the 
original feature set. For each of the feature set, different 
thresholds are evaluated to split the training samples 
according to a given criterion. The best split, including 
feature and optimal threshold, is recorded in the node. For 
a testing sample, it goes through each tree in the forest, 
obtaining labels from each tree, and the final prediction is 
determined by the most represented label.

Evaluation

To evaluate the performance of our CAD system, we 
calculated several parameters, including the sensitivity 
(SEN), specificity (SPC), positive predictive value (PPV), 
negative predictive value (NPV), and accuracy. The 
calculations of these values are defined as follows:

TPSEN
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Where TP, TN, FP, FN are the numbers for true 
positive, true negative, false positive, and false negative 
respectively. Also, we used the area under the receiver 
operating characteristic curve to estimate the probability 
that the classifier could rank a randomly chosen positive 
sample higher than a randomly chosen negative sample.

Results

The classification of thyroid nodule images

As a preliminary study, we developed the computer-
aided thyroid diagnosis system based on a small dataset 
(90 patients, 237 images). Leave-one-out cross-validation 
(LOOCV) was used as the size of the training set can be 
maximized. The model is trained based on the training 
dataset which incorporates all the data except one, and a 
prediction is made for that data which was left out. Each 
data was left out once. The classification results are shown 
in Table 2. All these classifiers show high accuracy in thyroid 
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cancer identification. SVM, bagging, and RF can achieve 
classification accuracy over 0.8200 and AUC over 0.8500. 
In contrast, LDA is less accurate, achieving an accuracy of 
0.7722 and AUC of 0.8446. The reason is that LDA fails to 
capture the nonlinear relationship with linear mapping.

Feature assessment

In the previous study, we used the whole seventeen features 
to achieve an accurate recognition of thyroid cancer based 
on CT images. To evaluate the performance of the first 
order and second order statistics separately, we built the 
classification models with different statistics and classifiers.

Comparing the methods with 1st order features and 
with GLCM features, the ACC and AUC of the former 
outperformed the latter in Table 3. Using only entropy, 
uniformity, average intensity, and standard deviation, the 
classification accuracy could reach over 0.8200 in both SVM 
and random forest. The classification using GLCM texture 

features achieves accuracy 0.7004 and AUC 0.7723 at best. 
From the experimental results, we can see that the gray-
scale distribution of thyroid image, first order statistics, 
made a greater contribution to the identification of thyroid 
cancer than GLCM. Compared to the results in Table 2, the 
highest ACC (0.8481, method = SVM) and AUC (0.9057, 
method = RF) in classification using both the first-order 
and second-order statistics also outperforms those (ACC 
=0.8270, method = 1st + SVM; AUC =0.9049, method = 1st 

+ RF) of using the first-order features only. Although the 
prediction accuracy using GLCM, which captures spatial 
correlation among adjacent pixels, is relatively low, the 
combination of first-order statistics and GLCM features 
performed well.

To reduce the redundancy in the original feature set, 
we implemented the relief algorithm (34). The database 
was randomly divided into 3 groups: 60% as training 
images, 20% as validation images, and 20% as test images. 
There are 142 (69 benign, 73 malignant), 48 (24 benign, 
24 malignant) and 47 (22 benign, 25 malignant) images in 
training, validation and test dataset respectively. We used 
the relief algorithm on the training dataset and obtained 
rank for all the features. Based on the feature rank, different 
feature subsets, from the top-ranked one to the bottom 
one, were included and evaluated on the validation dataset. 
The optimal feature subset was considered to have the 
best classification performance. Finally, we tested the 
optimal feature subset on the test dataset to evaluate its 
generalization ability.

From Table 4, the classification performance is better 
after feature selection than before. The relief algorithm 
not only reduced the redundancy but also improved the 

Table 2 The classification performance using four different 
classifiers

Method SEN SPC PPV NPV ACC AUC

LDA 0.8435 0.7049 0.7293 0.8269 0.7722 0.8446

SVM 0.8870 0.8115 0.8160 0.8839 0.8481 0.8991

Bagging 0.8197 0.8522 0.8547 0.8167 0.8354 0.8822

RF 0.8033 0.8435 0.8448 0.8017 0.8228 0.9057

SVM, support vector machine; RF, random forest; SEN, sensitivity; 
SPC, specificity; PPV, positive predictive value; NPV, negative 
predictive value.

Table 3 The classification performance using different statistics and classifiers

Method SEN SPC PPV NPV ACC AUC

1st + LDA 0.9130 0.6967 0.7394 0.8947 0.8017 0.7750

GLCM + LDA 0.6435 0.6803 0.6549 0.6694 0.6624 0.7150

1st + SVM 0.9826 0.6803 0.7434 0.9765 0.8270 0.8817

GLCM + SVM 0.6522 0.7459 0.7075 0.6947 0.7004 0.7223

1st + bagging 0.7377 0.8000 0.7965 0.7419 0.7679 0.8880

GLCM + bagging 0.7131 0.6696 0.6960 0.6875 0.6920 0.7177

1st + RF 0.7951 0.8522 0.8509 0.7967 0.8228 0.9049

GLCM + RF 0.6393 0.6261 0.6446 0.6207 0.6329 0.6816

1st is the first order statistics, and GLCM is the second order statistics. GLCM, gray level co-occurrence matrix; SVM, support vector 
machine; RF, random forest; SEN, sensitivity; SPC, specificity; PPV, positive predictive value; NPV, negative predictive value.
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prediction accuracy. To evaluate the risk of overfitting in the 
feature selection, we used the test set as the unseen samples. 
In Table 5, the classification results in the test data set are 
comparable with that in the validation set. The selected 
feature set performed better than the original seventeen 
features, and the generalization capability can be confirmed.

The selected feature set can be considered as the 
‘imaging biomarker’ to identify the thyroid cancer in CT 
images. Since different classifiers have slightly different 
classification performances, the selected feature subsets 
use different features with different classifiers. Redundant 
features will be removed. As shown in Figure 3, we can see 
the correlation and some variance in GLCM were removed 
in all the classifiers. The difference entropy in GLCM and 
uniformity were selected in all the classifiers. The features 
selected by three classifiers include angle second moment, 
entropy, inverse difference moment, sum entropy, and 
difference variance in GLCM. These frequently selected 
features could be important in the CAD system for thyroid 
nodule evaluation.

Thyroid identification based on CT images

The goal of our CAD system is to assist doctors in the 
interpretation of CT images and improve thyroid cancer 
diagnosis. To provide ‘a second opinion’ for the radiologist, 
we evaluated our method in each thyroid. In our database, 
there are 237 CT images from 98 thyroid glands. We used 
the proposed method to identify the CT images from 
each thyroid gland. Leave-one-out cross-validation was 
used in the study in which CT images from ‘one’ thyroid 
gland were considered as one test sample. Also, a four-
year experienced radiologist reviewed the CT images and 
provided the diagnosis recommendations. Then the reports 
were reassured by a senior radiologist. Please note that 

the radiologist categorized the thyroids into three groups: 
benign, malignant and indeterminate nodules. The third 
group may be caused by the image quality, the ambiguity of 
the lesion appearance, etc. We regarded the indeterminate 
group as an incorrect diagnosis in this study.

In Table 6, the presented CAD systems have higher 
accuracy than the visual inspection. The SVM method has 
the best performance in the thyroid nodule identification, 
achieving 0.8673 for accuracy and 0.9105 for AUC. As 
shown in Figure 4, we plotted the diagnosis results with 
different methods, including the pathological examination 
as the gold standard, radiologist visual inspection, LDA, 
SVM, bagging, and random forest classification results. 
We can find that 29 thyroid nodules were categorized into 
indeterminate nodules in the visual inspection as shown 

Table 4 The optimal classification performance in validation 
dataset using feature selection

Method SEN SPC PPV NPV ACC AUC

LDA 0.7917 0.8750 0.8636 0.8077 0.7917 0.8819

SVM 0.9583 0.7500 0.7931 0.9474 0.8542 0.8837

Bagging 0.9167 0.7500 0.7857 0.9000 0.8333 0.8872

RF 0.8333 0.8750 0.8696 0.8400 0.8542 0.9253

SVM, support vector machine; RF, random forest; SEN, sensitivity; 
SPC, specificity; PPV, positive predictive value; NPV, negative 
predictive value.

Table 5 The classification performance in the test data set using the 
selected feature set

Method SEN SPC PPV NPV ACC AUC

LDA 0.7273 0.8000 0.7619 0.7692 0.7917 0.8836

SVM 0.9545 0.7200 0.7500 0.9474 0.8298 0.9018

Bagging 0.8400 0.8636 0.8750 0.8261 0.8511 0.9282

RF 0.8400 0.9091 0.9130 0.8333 0.8723 0.9073

SVM, support vector machine; RF, random forest; SEN, sensitivity; 
SPC, specificity; PPV, positive predictive value; NPV, negative 
predictive value.

Figure 3 The selected features with four different classification 
algorithms. Color bars indicate the selections of the learning models. 
GLCM, gray level co-occurrence matrix.
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in Figure 5. It could be caused by the limited reading 
experience in thyroid CT images for our radiologist. In the 
future, the performance of senior radiologists and our CAD 
system could be evaluated. In this study, our CAD system 
can identify indeterminate cases, especially the malignant 
thyroid nodules. SVM, bagging and random forest showed 
comparable performance in thyroid nodule evaluation 
which could potentially improve the diagnostic accuracy.

Discussion

Nowadays, some studies have been conducted to assess 
the feasibility of CT images in thyroid nodule evaluation. 
Iodine concentration, Hounsfield unit curve slope, and 
effective atomic number can show a significant difference 

between benign and malignant groups (P<0.001) (35). 
Yoon reviewed CT scans of 734 patients and found that 
CT features, such as calcification, anterior-posterior and 
diameter ratios larger than 1, and mean attenuation valued 
larger than 130 HU, suggest malignancy of ITN (36).  
These previous investigations demonstrated that CT 
imaging characteristics have promising potential in the 
evaluation of thyroid nodules. Although the US imaging 
is still the preferred imaging modality for thyroid nodules, 
the CT imaging can provide valuable information for 
further operative intervention, especially for retrosternal 
goiters (22), malignant cases with extra-capsular extension 
suspicion (37), and cervical metastatic disease in papillary 
thyroid carcinoma (38).

In this preliminary study, we proposed the CAD systems 
to evaluate the thyroid nodules based on CT image analysis, 
selected the CT image features to improve the performance, 
and evaluated the CAD systems in thyroid identification. 
Comparing with the mentioned literature, our method 
achieved high and applicable performance with accuracy 
over 0.8500 and AUC over 0.9000.

The CT image analysis of thyroid nodules could provide 
cancer diagnosis information as ‘the second opinion’. 
Shetty’s study showed that there were no distinguishing 
CT features which can be used in visual inspection to 
identify a thyroid lesion as malignant (39). In our study, the 
recognition of thyroid cancer based on visual inspection 
has low accuracy, sensitivity and PPV (Table 6), which is 
consistent with Shetty’s work. In the visual inspection, 
the nodules were assessed with multiple imaging features, 
including size, location, density, the presence or absence 
of calcification, margins, and homogeneous versus 
heterogeneous consistency (39). These imaging features 
are quantified manually, which could be highly variable 
and rely on the experience, practice type and training of 
the radiologists (18). It is also difficult for visual inspection 
to capture the spatial relationship in images, like GLCM 
features, so the total numbers of variables are relatively 
smaller than that in our CAD system. Besides the data 
analysis method in previous studies, including Fisher's exact 
test, Student’s t-test, and one-way ANOVA (18,39,40), 
are used to determine the correlation between each CT 
feature and thyroid pathology. Our method served different 
purposes. It built a nonlinear model to interpret the high-
dimensional features and estimated the generalization 
performance via cross-validation. Our results (Figure 3) 
suggest that the combination of different features is better 

Table 6 Thyroid nodule identification using different methods

Method SEN SPC PPV NPV ACC AUC

LDA 0.8261 0.8077 0.7917 0.8400 0.8163 0.8700

SVM 0.9130 0.8269 0.8235 0.9149 0.8673 0.9105

Bagging 0.8269 0.8696 0.8776 0.8163 0.8469 0.8852

RF 0.8077 0.8696 0.8750 0.8000 0.8367 0.9047

Visual 
inspection

0.5926 0.8095 0.6667 0.7556 0.5102 –

SVM, support vector machine; RF, random forest; SEN, sensitivity; 
SPC, specificity; PPV, positive predictive value; NPV, negative 
predictive value.

Figure 4 The heatmap of the diagnosis results using different 
methods. From left to right: pathological diagnosis (pathology), 
visual inspection by the radiologist, linear discriminant analysis (1), 
adaptive boosting (bagging), random forest. SVM, support vector 
machine.
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in identifying the thyroid cancer than every single feature.
Incidental thyroid nodules were common findings in neck 

and chest CT scans (9), and our CAD system can provide 
the evaluation of the incidental thyroid nodules. The USG 
imaging could be introduced as a further step if the nodule 
showed malignant possibility in CT images. Compared to 
the USG imaging, the CT scan was used in the evaluation 
of mass effect, recurrence, and cancer extension into distant 
organs, such as the lungs (41). Nowadays, USG remains 
the major diagnostic modality for the evaluation of thyroid 
nodules (8). The previous ultrasound CAD systems, 
including ThyroScan (13), ThyroScreen (42), and Chang’s 
method (43), have reached high accuracy at 98.9%, 100%, 
and 98.3% respectively. However, these CAD systems 
were only assessed on small samples, 20, 20 and 59 patients 
respectively. A larger data set should be evaluated for a 
clinical trial. Our study reached an accuracy of 86.73% on 
the database of 90 patients.

Recently, deep convolutional neural network (DCNN) 
has proven effective in US image classification. Compared 
with the traditional CAD system, DCNN uses the input 
images and the convolutional layers to automatically extract 
information in the images, instead of building hand-crafted 
features. DCNN could improve prediction accuracy with 
large datasets (44). Ko used three CNNs diagnosing thyroid 

malignancy, and the AUCs were 0.845, 0.835, and 0.850 
retrospectively based on 589 thyroid nodules (45). Song 
developed a multi-task cascade convolution neural network 
framework (MC-CNN) to exploit the context information of 
thyroid nodules and achieved up to 98.2% accuracy (46). Li 
devised a faster R-CNN, which is more suitable for thyroid 
papillary carcinoma detection in ultrasound images (47).  
Chi achieved the experimental results show the proposed 
fine-tuned Google-Net model achieves excellent classification 
performance, attaining 98.29% classification accuracy, 
99.10% sensitivity and 93.90% specificity (48). Most of 
the thyroid studies using deep learning are based on the 
US images since US has been a major technique in thyroid 
diagnosis for around five decades (49). However, the value 
of CAD system using CT images for thyroid nodules was 
not reported. As a preliminary study, small numbers of CT 
thyroid cases were collected, and the CAD system based on 
CT images was proposed and evaluated. DCNN method 
was not considered in this work to avoid the overfitting on 
the small dataset (50). In the future study, a large number 
of CT images will be collected, and DCNN method will 
be introduced to improve the performance of CAD system 
further.

There are two limitations in our current study. First, 
radiologists have to delineate the ROIs manually on the 

Figure 5 Thyroid CT images for benign and malignant nodules indeterminate in visual inspection of the radiologist. (A) Benign nodules 
identified using our CAD method; (B,C) malignant nodules identified using our CAD method; (D) benign nodules unidentified using our 
CAD method; (E,F) malignant nodules unidentified using our CAD method. Red arrows indicate the diseased regions. CT, computed 
tomography; CAD, computer-aided diagnosis.
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CT slices. The delineation is tedious and suffers inter-
observer variation. Our future work may include automatic 
segmentation of thyroid ROI to improve efficiency. 
Second, only the CT images were included in the diagnosis 
system. In the future study, more clinical information 
(blood tests, medical histories, and physical examination) 
and multimodality images (US and MRI) can be included 
and analyzed to improve the accuracy of the CAD system 
accuracy further.

Conclusions

We have developed a CAD system using texture features 
and support vector machine to evaluate the malignancy 
risk of thyroid nodule in CT images. In this study, we used  
98 retrospective cases to build a thyroid database, including 
237 thyroid CT images, pathological and radiological findings. 
Seventeen features, including first-order and second-
order statistics, were extracted from CT images. Different 
classifiers (LDA, SVM, bagging, and random forest) were 
used to evaluate the performance of the CAD system. We 
also evaluated the performance of the feature subsets and 
selected the feature combination with relief algorithm. The 
accuracy of our CAD system reached 0.8673 in thyroid 
cancer identification. We do not expect that the presented 
method will replace the USG examinations. However, our 
system potentially could improve the accuracy of thyroid 
nodule diagnosis, reduce the burden of the radiologist and 
promote the interpretation of thyroid CT images.
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