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Introduction

Human papillomavirus (HPV) is estimated to represent 
the most common cause of oropharyngeal squamous cell 

carcinoma (OPSCC) in the United States (1). Compared to 

HPV-negative OPSCC, HPV-positive OPSCC has better 

prognosis (2,3). However, some HPV-positive OPSCCs may 
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display aggressive behavior leading to poor outcomes (4).  
The ability to predict the prognosis of HPV-positive 
OPSCC is of clinical significance because treatments may 
be tailored to optimize treatment of individual patients’ 
tumors. For example, early identification or prediction of 
poor responders could potentially avoid unnecessary drug 
toxicity and cost, and allow for the selection of alternative 
treatment regimens that could improve clinical outcome.

Certain molecular biomarkers in HPV-positive 
tumors seem to correlate with prognosis. For example, a 
class of oropharyngeal cancers with high p16 and lower 
p53 and Rb expression is associated with improved  
prognosis (4). Otherwise, HPV status alone was found 
to be of no prognostic value for local recurrence (4). 
Ultimately, biopsy samples represent a small fraction of 
the tumors and especially in the case of heterogeneous 
tumors; the tissue in the biopsy specimen may not 
accurately represent the entire tumor, thereby limiting the 
usefulness of some biomarkers (5).

Alternatively, radiomic texture analysis may serve as a 
non-invasive whole-tumor biomarker for oropharyngeal 
squamous cell carcinomas. For example, several CT texture 
features exhibit significant differences between HPV-
positive and HPV-negative oropharyngeal squamous cell 
carcinomas, suggesting that these texture parameters may 
be predictive of HPV status in oropharyngeal squamous cell 
carcinomas (6-8). Another study found that MRI texture 
analysis could successfully predict p53 status of head and 
neck squamous cell carcinomas, a biomarker of tumor 
aggressiveness and poor prognosis, with 81% accuracy (9). 
Furthermore, primary tumor CT texture and histogram 
analysis parameters were found to be associated with overall 
survival in patients with locally advanced squamous cell 
carcinoma of the head and neck treated with induction 
chemotherapy (10). Similarly, the overexpression of VEGF 
was positively associated with the increased heterogeneity 
on pre-treatment 18FDG-PET for pharyngeal cancers and 
represents an independent prognostic predictor (11,12).

The goal of this study is to determine the additive value 
of radiomic texture features of the HPV-positive primary 
oropharyngeal squamous cell carcinoma in predicting 
progression-free survival.

Methods

Patients

This retrospective study was approved by institutional 

review board and informed consent was waived. Patients 
with locally advanced HPV-positive oropharyngeal 
squamous cell carcinoma who participated in a clinical 
trial from May 2010 to March 2014 were included in this  
study (13). All the primary oropharyngeal tumors included 
in the trial were biopsied and HPV status was determined 
at study enrollment by either p16 immunohistochemistry 
or in situ hybridization. Furthermore, eligible patients 
were at least 18 years of age with histologically proven 
and measurable stage IVa or IVb tumors, a Karnofsky 
performance scale index for assessment of functional 
impairment of at least 70% (14), and normal organ 
and marrow function. Exclusion criteria included 
metastatic disease, symptomatic peripheral neuropathy, 
prior chemotherapy or radiation therapy, or current 
immunosuppressive therapy. Two cycles of induction 
chemotherapy were administered every 21 days.

Patients with measurable locally advanced tumor 
received two cycles of induction chemotherapy (cisplatin, 
paclitaxel, cetuximab ± everolimus). Response was 
evaluated radiographically via contrast-enhanced neck 
CT after completion of induction chemotherapy by a 
neuroradiologist. Good response (GR) was defined as 
≥50% reduction in the sum of target measurements as 
defined by RECIST 1.1. Patients with <50% decrease in 
the sum of target lesions were classified as non-responders 
(NR). Patients with ≥50% reduction in the sum of tumor 
diameters, or good response, received TFHX (paclitaxel, 
fluorouracil, hydroxyurea, and 1.5 Gy twice daily RT 
every other week) to a dose of 75 Gy with the single 
planning target volume (PTV1) encompassing exclusively 
gross disease and created by a uniform expansion of the 
gross tumor volume (GTV) by 1.5 cm to a dose of 75 Gy. 
Intensity-modulated radiation therapy (IMRT) was used 
with image guidance. 

Patients with <50% response (non-response) were 
treated with TFHX encompassing the planning target 
volume (PTV2) and the next nodal station at risk to a dose 
of 45 Gy followed by a sequential boost to the planning 
target volume (PTV1) to a dose of 75 Gy. Patients were 
also evaluated via CT of the neck and chest at 1, 6, 12, and  
24 months after chemoradiotherapy. There was improved 
late toxicity from RT volume de-escalation, including a 
lower rate of G-tube dependency at 1-year after. However, 
acute toxicity was not significantly different between 
patients with GR versus NR, although acute toxicity is also 
attributable to chemotherapy, which was consistent among 
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patients with GR versus NR (13).
Progression status was determined based on clinico-

radiological assessment and disease progression was 
defined based on RECIST 1.1. Biopsy or surgery was only 
performed in patients believed to have residual disease after 
treatment based on clinicoradiological assessment. The time 
to progression was defined as the period between the date of 
the initial CT and date of progression. Patients with ≥50% 
reduction in the sum of tumor diameters, or good response, 
received TFHX (paclitaxel, fluorouracil, hydroxyurea, and 
1.5 Gy twice daily RT every other week) to a dose of 75 Gy  
with the single planning target volume encompassing 
exclusively gross disease. Patients with <50% response 
(non-response) were treated with TFHX encompassing the 
planning target volume and the next nodal station at risk 
to a dose of 45 Gy followed by a sequential boost to the 
planning target volume to a dose of 75 Gy.

Kaplan-Meier analysis

The relat ionships  between tumor heterogeneity, 
progression, and response to induction chemotherapy were 
also assessed with Kaplan-Meier analysis to ascertain how 
the texture features correlate with progression-free survival. 
Progression free survival was defined as the length of time 
during and after the treatment that a patient lives with 
the disease, but does not worsen. Kaplan-Meier curves for 
progression free survival and differences between survival 

curves were determined by a non-parametric log rank test. 
A P of less than 0.05 was considered significant.

CT acquisition

Pre-treatment contrast-enhanced neck CT scans obtained 
at our institution of patients with measurable oropharyngeal 
squamous cell carcinomas were included in the analysis, as 
part of the response-adapted volume de-escalation clinical 
trial (13). The images were acquired on multidetector 
Philips Brilliance 64 slice CT scanners after intravenous 
injection of nonionic iodinated contrast medium (350 mg 
of iodine per milliliter, Omnipaque) at a rate of 1.2 mL/s  
and 55 s delay after the start of the injection. The scan 
parameters included 120 kV; 250 mAs; rotation time, 1.0 
second; pitch, 0.75; collimation, 24 mm × 1.2 mm with 
a B30s smoothing algorithm; section thickness, 3 mm; 
intervals, 3 mm, and display field of view, 20 to 25 cm. 

CT texture analysis

A quantitative in-house developed Radiomics Texture 
Analysis (RTA) workstation was used to compute texture 
features within each contoured region directly from the 
HU units within the image data, yielding radiomic features 
of the magnitude and spatial variations that describe the 
heterogeneity of the image pattern (15). Scans with tumors 
at least partly obscured by dental amalgam artifact were 
excluded from the analysis. Segmentations of the primary 
lesion on pre-treatment CT scans (Figure 1) were manually 
performed by a researcher under the supervision of a 
fellowship-trained neuroradiologist with CAQ and 5 years 
of experience, both of whom were blinded to the clinical 
outcomes. A single slice through the central portion of the 
tumor was selected for texture analysis in order to avoid 
volume averaging effects. The regions of interest did not 
extend beyond the margins of the tumors in order to avoid 
including normal surrounding tissues and air. 

The following texture features were calculated: contrast, 
correlation, difference entropy, difference variance, energy, 
entropy, homogeneity, information measure of correlation 1 
and 2, maximum correlation coefficient, sum average, sum 
entropy, sum variance, variance, and skewness. Note that 
these texture features can be described by two categories: 
(I) one feature group based on intensity (magnitude) 
distributions within the ROI and (II) another feature group 
based on spatial (pattern) distributions within the ROI. The 
highest performing texture features from the intensity-based 

Figure 1 Screen capture of the University of Chicago Radiomics 
Texture Analysis workstation shows an ROI outlining a left 
oropharyngeal squamous cell carcinoma.
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and the spatial variation groups were chosen to be merged 
with the percent change in tumor size based on RECIST 
1.1 using round robin linear discriminant analysis (LDA), 
which resulted in a linear weighted sum of the features, 
i.e., a texture signature (16). Skewness and entropy were 
selected for inclusion in the texture signature by applying 
stepwise feature selection. Stepwise feature selection was 
iteratively performed in a leave-one-out manner, and the 
two most frequently selected features were retained for the 
final model.

The resulting radiomic texture features characterizing the 
magnitude and spatial variation of the HU pattern within 
the oropharyngeal tumors were skewness and entropy, 
respectively. Skewness can be expressed mathematically by 
equation 1. In this equation, x represents each pixel value, µ 
is the mean of pixel values, and σ is the standard deviation 
of pixel values:

( )3

3

E x
s

µ
σ
−

= 	 [1]

On the other hand, entropy describes the level of 
randomness in an image. A high entropy value indicates a 
low degree of order, while a low entropy value indicates a 
high degree of order. In this expression, c is the gray-level 
co-occurrence matrix indexed by i and j:

( )logi j ij ijE c c= −∑ ∑ 	 [2]

ROC analysis & statistical evaluation

The accuracy of texture features extracted from the 
radiologist-assigned oropharyngeal carcinoma tumor key 
slice to predict progression was evaluated using ROC 
methodology with the area under the curve (AUC) serving 
as the metric of performance (17). The PROPROC 
software package developed at the University of Chicago 
was used to calculate the estimate of the AUC for each 

curve according to the proper binormal model (10). The 
AUC was calculated for the percent change in tumor 
size feature alone, and for the texture signature, which 
included the percent change in tumor size merged with 
the two texture features characterizing the magnitude 
and spatial variation of the HU pattern within the tumor. 
The statistical significance of the difference between the 
AUCs was assessed using the one-tailed P of the correlated 
area test statistic, and the 95% confidence interval for 
the difference. A P value of less than 0.05 was considered 
significant.

Results

A total of 38 patients (4 females, 34 males; average age 
62.1 years) with HPV-positive oropharyngeal squamous 
cell carcinoma and available contrast-enhanced neck 
CTs underwent texture analysis. Among the total of 38 
patients with HPV-positive oropharyngeal squamous cell 
carcinoma and available contrast-enhanced neck CTs, 19 
patients that had good response to induction chemotherapy 
and 19 patients had no significant response to induction 
chemotherapy based on RECIST 1.1 criteria (Tables 1 
and 2). Furthermore, there were 7 patients with disease 
progression and 31 patients without disease progression. 
The patients that responded to induction chemotherapy had 
significantly (P=0.036) better progression free survival than 
the patients that did not respond to induction chemotherapy 
(Figure 2). The median follow up time was 41 months.

The resulting texture feature statistics for patients with 
and without disease progression and the texture feature 
definitions are listed in Tables 3 and 4, respectively. The 
combination of radiographic texture analysis, including 
skewness and entropy, with percent change in size after 
induction chemotherapy yielded a statistically significant 
(one-tailed P=0.0087) increase in performance for assessing 
tumor progression over change in size alone, with an 

Table 1 Patient characteristics for tumor response to induction chemotherapy

Characteristic GR (N=19) PR (N=19) P

Median age in years [range] 61 [54–77] 62 [46–79] 0.61

Male, n (%) 17 (89.5) 17 (89.5) 1.00

Tumor stage ≥ T3, n (%) 11 (57.9) 9 (47.4) 0.52

Tumor stage ≥ N2b, n (%) 17 (89.5) 17 (89.5) 1.00

GR, good response; PR, poor response; DP, disease progression; NP, no progression.
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area under the ROC curve of 0.80 versus 0.56 (Figure 3). 
Tumors with radiomic texture signature greater than AUC 
of 0.80 trended towards decreased risk of progression, 
although this was not statistically significant with a P-value 
of 0.408 (Figure 4). Examples of tumors with different 
clinical outcomes and corresponding RTA output results are 
depicted on Figure 5.

Discussion

There is a trend towards personalization of oncologic 
therapy in head and neck oncology, with the goal of 
optimizing treatment outcomes for individual patients (18).  
With respect to radiological imaging, this can be 
accomplished through the emerging field of radiomics, 
which consists of a high-throughput extraction of advanced 
quantitative features in images with the use of mathematical 

algorithms. These features contain information about 
tumor shape, tumor intensity, and tumor texture, and are 
often beyond the discerning capabilities of the human visual 
system (19). In particular, texture analysis quantitatively 
characterizes the spatial distribution of pixels and gray-level 
intensities in radiological images of a region of interest (20).

A large number of radiomic features have been found 
to have prognostic power in independent data sets for 
various types of cancers (21,22). In particular, tumor spatial 
heterogeneity is an important prognostic factor (8,23). 
Indeed, a radiomic signature based on shape, intensity, 
texture, and wavelet transform showed that head and neck 
squamous cell carcinomas that are more heterogeneous 
on CT tend to have worse local control (8). Furthermore, 
higher entropy and positive skewness tend to correlate with 
increased heterogeneity and portend poorer prognosis, as 
was found in this study for HPV-positive oropharyngeal 
squamous cell carcinomas and several other types of  
tumors (19). Similarly, certain CT histogram and gray-level 
run-length features of the primary tumors in patients with 
head and neck squamous cell carcinoma are associated with 
local failure in patients with head and neck squamous cell 
carcinoma treated with chemoradiotherapy (24). Ultimately, 
CT radiomics has the potential for assessing the risk of 
specific tumor outcomes using multiple stratification groups 
in patients with head and neck cancer (18).

The basis for the prognostic value of a radiomic signature 
that reflects intratumor heterogeneity may be associated 
with underlying gene-expression patterns (21,25). Thus, 
it is not surprising that the combination of skewness and 
entropy calculated on the central slice pre-treatment CT of 
the HPV-positive oropharyngeal squamous cell carcinomas 
in this study showed additive prognostic value over percent 
size change alone in assessing progression post induction 
chemotherapy. This pertains to predicting the response 
of tumors to radiotherapy prior to the start of treatment 
could enhance clinical care management by enabling the 

Table 2 Patient characteristics for disease progression

Characteristic DP (N=7) NP (N=31) P

Median age in years [range] 66 [59–79] 61 [46–77] 0.85

Male, n (%) 7 (100.0) 27 (87.1) 0.32

Tumor stage ≥ T3, n (%) 5 (71.4) 13 (41.9) 0.16

Tumor stage ≥ N2b, n (%) 6 (85.7) 26 (83.9) 0.91

GR, good response; PR, poor response; DP, disease progression; NP, no progression.

Figure 2 Kaplan-Meier curve of progression-free survival 
for tumors that had greater than 50% response to induction 
chemotherapy and those that had less than 50% response to 
induction chemotherapy (P=0.036).
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personalization of treatment plans based on predicted 
outcome. Indeed, applying texture analysis to routine 
clinical imaging can potentially serve as an opportunity 
to improve decision-support in cancer treatment at low  
cost (21).

Although the results of this study were statistically 
significant, the patient cohort was relatively small, which 
precluded the use of independent datasets for training and 
validation. Instead, we used a round-robin approach for 
the evaluation. Nevertheless, there were few confounding 
effects in this study. For example, the addition of 
Everolimus to the induction chemotherapy regimen was not 
found to be beneficial (13). Furthermore, the elimination 
of elective nodal coverage in patients with good response 
to induction chemotherapy did not appear to compromise 
outcomes. Also, the use of a single representative slice of 
CT for the texture analysis did not allow for evaluation of 
volumetric features that could provide a more representative 
measure of tumor heterogeneity. This may be the subject 
of future studies. There was no normalization of images 
prior to texture analysis. However, the scans were acquired 

with identical protocols and processed in a similar fashion 
in order to minimize any variation in tissue enhancement. 
This theoretical limitation may be addressed in future 
studies on the subject. Ultimately, the prognosis of patients 
included in the particular clinical trial for this study may or 
may not be relevant to other treatment regimens or subset 
of tumors of the head and neck cancer.

With regards to image quality, CT scans with dental 
amalgam streak artifact and other CT artifacts at the level 
of the tumors were excluded from the analysis in this study. 
Although some of the results in this study were statistically 
significant, the patient cohort was relatively small, which 
precluded the use of independent datasets for training and 
validation (26). 

Conclusions

In this preliminary study, a radiomic signature that consists 
of percent change in primary tumor size combined with 
skewness and entropy of HPV-positive oropharyngeal 
squamous cell carcinoma on pre-treatment CT was shown 

Table 3 Texture feature statistics

Texture features
Progression No progression

µ σ µ σ

% Reduction 48.82 16.00 53.99 26.19

Contrast 26.58 13.12 29.73 16.79

Correlation 0.81 0.07 0.81 0.08

Difference Entropy 2.26 0.51 2.37 0.33

Difference variance 11.39 4.68 12.42 6.20

Energy 0.01 0.02 0.00 0.00

Entropy 5.89 1.11 6.09 0.58

Homogeneity 0.37 0.14 0.34 0.08

IMC1 −0.22 0.06 −0.21 0.06

IMC2 0.86 0.05 0.86 0.06

Maximum Correlation 0.83 0.07 0.84 0.08

Sum Average 80.01 22.26 77.09 14.12

Sum Entropy 4.00 0.60 4.10 0.34

Sum Variance 277.19 145.40 307.57 153.15

Variance 75.94 38.30 84.32 40.87

Skewness −1.24 2.97 −0.51 0.91

µ, mean; σ, standard deviation.
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Table 4 Texture feature definitions
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Figure 5 Examples of CT images of oropharyngeal tumors in four different patients with their corresponding status in terms of progression 
versus no progression and the Radiomics Texture Analysis output result. (A) Progression correctly identified as progression with a high 
likelihood value of 3.63, (B) progression incorrectly identified as non-progression with a low likelihood value of 0.03, (C) no progression 
correctly identified as non-progression with a low likelihood value of −0.54, (D) and no progression incorrectly identified as progression 
with a high likelihood value of 1.05.

A B
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Figure 3 ROC plots demonstrate the improved performance for 
predicting progression free survival when change in tumor size is 
combined with texture features to yield a tumor signature.
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Figure 4 Kaplan-Meier survival curveshows that tumors with 
radiomic texture signature greater than AUC of 0.80 trended 
towards decreased risk of progression.
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to yield a statistically significant improved performance in 
the task of predicting progression free survival over percent 
change in tumor size alone. However, further validation of 
this finding in a larger cohort is warranted.
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