
© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2019;9(2):263-272qims.amegroups.com

Introduction

Lung cancer is the leading cause of cancer-related death 
worldwide (1). It has the highest rate of incidence and 
mortality in China (2). Low-dose computed tomography 
(LDCT) is the most widely used modality for early lung 
cancer detection and mortality reduction (3,4). Research 
has shown that among LDCT screening participants, the 
prevalence of small solid pulmonary nodules (SSPNs) was 

higher than that of non-solid nodules (NSNs) and part-solid 
nodules (PSNs), while other studies have demonstrated that 
malignancy is most frequently detected in SSPNs larger than 
6 mm (5,6). As reported by the International Early Lung 
Cancer Action Program (I-ELCAP) (6), only 0.3% of the 
nodules less than 6 mm at the baseline screening round were 
found to be malignant. However, with increasing diameter, 
the prevalence of malignancy with an SSPN ≥6 mm  
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on the baseline round of screening was sufficiently high 
that it prompted additional work-up in most screening 
guidelines.

Moreover, the growth rate of malignant SSPNs are 
more rapid, and their volume doubling time is faster than 
that of the sub-solid nodules (GGNs and PSNs) (7-9), 
which increases the urgency of making an early diagnosis. 
However, the imaging characteristics, such as pleural tag, 
spiculation and lobulation, are less specific for SSPNs of 6 to 
15 mm (5,10) compared to larger ones, and there is greater 
overlap in features between benign and malignant nodules. 
Most of the indeterminate SSPNs detected by screening CT 
scans need annual repeat screening or follow-up scan with 
relevant guidelines, such as the ACR Lung RADS.

Radiomics, via high-throughput extraction of large 
numbers of image features from radiographic images (11), 
has been used to build descriptive and predictive models 
which relate image features to tumor characteristics, and 
can thereby provide valuable diagnostic and prognostic 
information.  Radiomics  has  been shown to have 
significantly higher accuracy in predicting malignancy 
(12,13), and has four categories of quantitative descriptor 
features: morphological, statistical, regional, and model-
based (14). These provide a greater differential diagnosis of 
lung nodules than radiology can offer. Despite the available 
knowledge, there are no studies that are specifically focused 
on the usefulness of radiomics for predicting malignancy in 
6–15 mm SSPNs in LDCT screening for lung cancer. The 
present study aimed to develop a radiomic predictive model 
on the differential diagnosis of SSPNs in this size category 
and to compare its performance with radiology using the 
ACR Lung-RADS.

Methods

Patients

Ethical approval was obtained for this study, and the 
necessity to obtain informed consent was waived as the data 
were analyzed retrospectively and anonymously.

The inclusion criteria were as follows: (I) LDCT scan 
with 1 mm slice thickness; (II) detection of solid pulmonary 
nodule (6–15 mm in diameter) without calcification typical 
for benign lesion; (III) final pathological confirmation or 
clinical diagnosis based on long-term follow-up available 
for each nodule. The exclusion criteria were as follows: 
(I) respiratory artifacts that potentially affected the lesion 
characterization; (II) nodules with obscure border, which 

limited the ability to perform robust segmentation. 
The nodule evaluation process was performed by two 

radiologists (3 and 15 years of experience in chest imaging). 
A total of 294 cases (199 men, 95 women; average age, 
52.1±9.6 years; age range 40–79 years) with 294 solid lung 
nodules detected from September 2011 to December 2017 in 
one institution were enrolled in this study. Sixty-one of the 
294 nodules were malignant, and included adenocarcinoma 
(n=39), squamous cell carcinoma (n=16), small cell carcinoma 
(n=5), and large cell carcinoma (n=1). The remaining 233 
nodules were confirmed as benign based either on stability 
during long term follow-up (n=209) or pathological 
diagnosis, including tuberculoma (n=9), inflammatory 
granulomas (n=6), pulmonary lymph node (n=4), sclerosing 
alveolar cytoma (n=4) and pleural fibrous tumor (n=1). Based 
on the number of cases and using a conventional protocol 
for modeling, the 294 nodules were divided into a training 
data set (156 benign, 40 malignant) and a validation data set 
(77 benign, 21 malignant). Computer-generated random 
numbers were used to assign cases.

Image acquisition

The non-contrast enhanced CT scan was performed using 
a 16-row detector scanner (Somatom Sensation, Siemens 
Healthcare, Germany). The acquisition parameters were as 
follows: tube voltage of 120 kV, tube current of 20–60 mAs, 
pitch of 0.75, B50 kernel, 512×512 matrix size, and 1 mm 
section thickness. All of the CT images were retrieved from 
the picture archiving and communication system (Neusoft, 
Shenyang, China) for post processing.

Segmentation and imaging texture analysis

CT images were displayed with a window level of −600 
Hounsfield units (HU) and a window width of 1,500 HU. 
All target nodules were successfully segmented in 3D with 
a manual single-click ensemble segmentation approach, 
running on the ITK-SNAP platform (an open-source 
software on the internet). The extraction of radiomic 
features based on the volume of interest (VOI) was 
completed by using in-house texture analysis algorithms 
implemented in Analysis-Kinetic (Version 1.0.3, GE 
Healthcare, Guangzhou, China). The inter-observer 
reproducibility was initially analyzed with 20 randomly 
chosen images for VOI based morphological features 
extraction by two experienced radiologists (Liting Mao and 
Mingzhu Liang with 3 and 15 years of experience in chest 
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CT imaging respectively) in a blinded form. The same 
two radiologists who were blinded to the final diagnosis 
also classified the nodules of the validation sets into four 
categories according to the ACR Lung-RADS (15). The 
inter-observer and intra-observer consistency of lung 
nodule classification were measured, and the intra-observer 
consistency test was based on repeated observations after a 
6-month interval. 

All images were resampled into 8-bit gray level scale 
(256 different gray levels) images for the extractions of 
second-order features. In total, 385 radiomic features were 
extracted from the CT images of the nodules, and of these, 
329 quantitative features including morphological features 
and statistical features were finally selected as some of the 
features could not be obtained in portions of the nodules. 
The statistical features were further classified into histogram 
statistical (first order) features and texture (higher-order) 
features.

Statistical analysis

The statistical analysis was performed with R software, 
version 3.0.1 (http://www.R-project.org). The reported 
statistical significance levels were all two-sided, with the 
statistical significance level set at P<0.05.

The differences in age, sex and mean follow-up time 
between the training and validation data sets were assessed 
by using an independent samples t-test, χ2, or Mann-
Whitney U test, where appropriate. Comparisons of 
morphological related features and histogram measurements 
between benign and malignant nodules were made using 
t-tests. The inter-observer and intra-observer agreement 
of lung nodule classification were analyzed by McNemar 
method, and the statistic κ was calculated.

Intra-class correlation coefficient (ICC) was determined 
to assess the inter-observer agreement for nodule 
segmentations. Inter-observer agreement was considered as 
slight (ICC =0.11–0.40), fair (ICC =0.41–0.60), moderate 
(ICC =0.61–0.80), and good (ICC ≥0.81–1.00).

Feature selection and radiomic score-based model 
construction
We used the principle of the least redundant and 
maximum correlation to select out the non-redundant and 
optimized quantitative image features on the training data 
set. Since the quantitative radiomic features did not have 
a normal distribution, Kruskal-Wallis Test was employed 
to select the features that were statistically different 
between the benign and malignant groups, and Spearman 
correlation analysis was used to exclude the highly 
interrelated features based on a correlation coefficient of 
r≥0.9. The least absolute shrinkage and selection operator 
(LASSO) method, which is appropriate for the reduction 
of high-dimensional data (16), was applied to select the 
most important predictive features from the training data 
set. The selected features were then combined into a linear 
regression equation, and a radiomic score (Rad-score) was 
computed for each case.

Comparison between radiomic model and ACR  
Lung-RADS in predicting lung cancer
According to the ACR Lung-RADS, nodules of category 
4 are considered to be likely malignancy, and categories 
1–3 are considered to be benign or likely benign lesions. 
Receiver operating characteristic (ROC) was performed, 
and the area under the curve (AUC) was calculated both in 
the training and validation data sets. The flowchart of this 
study is summarized in Figure 1.

Figure 1 Flowchart of the study. ROI, region of interest; VOI, volume of interest.
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Results

Clinical characteristics

The baseline clinical-pathologic characteristics, including age, 
sex, mean follow-up time of benign nodules and histologic 
subtype, of the patients in the training and validation dataset, 
are listed in Table 1. There was no difference between the 
training dataset and the validation dataset in regards to 
clinical pathologic characteristics (P=0.13–0.70).

The inter-observer reproducibility of drawing VOI was 
high (ICC >0.92, Table 2). The intra- and inter-observer 
reproducibility of lung nodule classification was fairly 
good, with the κ values of inter-observer and intra-observer 
being 0.86 (P<0.0001) and 0.93 (P<0.0001) respectively. 
Therefore, the segmentation of nodules were determined 
by one radiologist (Liting Mao) while the classification was 
carried out by two radiologists (Liting Mao and Mingzhu 
Liang). If the two radiologists had different opinions, the 
issue was resolved through consensus; if consensus could 
not be reached, the issue was resolved by a third radiologist 

(Xueguo Liu with 30 years’ experience).

Comparison between the benign and malignant nodules

At baseline, the malignant nodules were larger in size 
than the benign ones (9.0±2.9 vs. 6.1±1.5 mm, P<0.001). 
Moreover,  Maximum 3D Diameter and Spherical 
Disproportion of the malignant nodules were larger than 
those of the benign ones (P<0.001 and P=0.001). The benign 
nodules had greater skewness (P<0.001) and less kurtosis 
(P=0.021) compared to the malignant nodules. As shown in 
Figure 2, it was difficult to distinguish the benign (upper row) 
from cancerous nodules (lower row) on the baseline scan by 
routine morphological features, while the radiomic features 
including histogram features and mean attenuation were 
significantly differentiable between the two nodules. 

Construction of the radiomic score-based predictive model

Eleven non-redundant predictors were extracted from 
the 385 features based on the training set of the 196 cases  
(Figure 3), and those features with nonzero coefficients 
were used in the LASSO logistic regression model. Their 
coefficients are shown in Table 3. The AUC value of the 
training dataset was 0.953 (95% CI, 0.905–0.987).

Validation of radiomic predictive model

In this study, the outcome variable was either a benign or 

Table 1 Clinical characteristics of patients in the training and validation dataset

Characteristic Training dataset (N=196) Validation dataset (N=98) P value

Age, mean ± SD, years 52.0±9.0 54.9±8.8 0.70

Sex, n (%)

Male 127 (64.8) 72 (73.5)

Female 69 (35.2) 26 (26.5) 0.13

Follow-up time*, mean ± SD, y 4.0±0.8 (n=138) 4.3±0.7 (n=71) 0.20

Histologic subtype
†
, n (%)

Adenocarcinoma 25 (62.5) 14 (66.7) –

Squamous cell carcinoma 10 (25.0) 6 (28.6) –

Small cell lung carcinoma 4 (10.0) 1 (4.7) –

Large cell lung carcinoma 1 (2.5) 0 (0) –

*, the follow-up time of the 209 benign nodules, data in parentheses are the number of cases; 
†
, the histologic subtype of the 61 malignant 

nodules.

Table 2 Results of ICC between two radiologists

Radiomic features ICC (95% CI) P value

Maximum diameter 3D (mm) 0.925 (0.807, 0.989) <0.001

Surface area (mm
2
) 0.968 (0.829, 0.993) <0.001

Volume (mm
3
) 0.971 (0.835, 0.995) <0.001

ICC, intra-class correlation coefficient.
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Figure 2 Baseline and follow-up scans of a benign nodule in a 52-year-old male (A,B) and an adenocarcinoma in a 47-year-old male (C,D). (B) 
and (D) were follow-up scans. The traditional radiologic CT features on the baseline scan were similar between the two nodules, while some 
of radiomic features were significantly different.
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Figure 3 Radiomic feature selection using the least absolute shrinkage and selection operator (LASSO) binary logistic regression model. 
(A) Tuning parameter (λ) selection in the LASSO model used 10-fold cross-validation via minimum criteria. The area under the receiver 
operating characteristic (AUC) curve was plotted versus log (λ). Dotted vertical lines were drawn at the optimal values by using the 
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cross-validation, where optimal λ resulted in 11 nonzero coefficients.
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malignant nodule, a dichotomous outcome. In the radiomic 
model, the P value was the standard to classify the nodules, 
while the optimum threshold came from ROC. As shown 
in Table 4 and Figure 4, the accuracy of the radiomic model 
is higher than that of ACR Lung-RADS (89.8% vs. 76.5%, 
P<0.01), with the AUC values of 0.97 and 0.77 respectively. 
The sensitivity and specificity was 81.0% and 92.2% 
respectively, using the radiomic predictive model, and 
47.6% and 84.4% respectively, using the ACR lung RADS 
approach. Six cases were misdiagnosed in both approaches, 
but ACR lung RADS misdiagnosed an additional 17 cases. 
Illustrations of the predictive results are shown in Figure 5.

Discussion

This study aimed to develop a radiomic predictive model 
that could facilitate distinction between benign and 
malignant SSPNs. Nodule morphologic features including 
size, consistency, shape and volume have been reported 

to be correlated with invasiveness and prognosis of lung 
cancers (17-19), and textural features have also exhibited 
substantial promise as prognostic indicators in thoracic 
oncology (20-23). Besides the description of conventional 
characteristics (shape, volume etc.), invisible information 
including histogram, higher order features etc. can be 
extracted using radiomic analysis. A histogram displays the 
range and frequency of pixel values within the defined lesion 
ROI, which reflects the planar characteristics (24), while the 
higher order features correspond to the spatial information 
among pixels, thus reflecting more internal characteristics 
of tumor texture and heterogeneity. We selected 11 non-
redundant radiomic features with statistical difference 
out of 385 features. The numerical value of Maximum3D 
Diameter and spherical disproportion in lung cancers 
was higher than that in benign nodules. In the histogram 
analysis, a significant difference was found in the kurtosis 
values between benign and malignant nodules, which was 
consistent with the results of Kamiya (12). The greater 

Table 4 The comparison between the radiomics model and ACR Lung-RADS

Model Category Malignant (n=21) Benign (n=77) Total (n=98) Accuracy TPR TNR AUC

Radiomics Malignant 17 6 23

Benign 4 71 75 89.8% 81.0% 92.2% 0.97

Lung-RADS Malignant 10 12 22

Benign 11 65 76 76.5% 47.6% 84.4% 0.77

Note: TPR, true positive rate (sensitivity); TNR, true negative rate, (specificity); AUC, area under curve.

Table 3 The selected radiomic features and relevant coefficients in 
predictive models

Radiomic features Regression coefficient

Quantile0.025 3.23×10
−3

Quantile0.975 1.37×10
−2

SumAverage −1.47×10
1

SumEntropy −3.23

InverseDifference Moment AllDirection 1.19×10
2

GLCM Entropy AllDirection 8.29

GLCMEntropy_angle0 1.53×10
2

GLCMEntropy_angle45 1.45×10
−2

GLCMEntropy_angle90 −1.25×10
−4

GreylevelNonuniformity_AllDirection −1.56×10
−1

SphericalDisproportion 1.84

Figure 4 Binary classifier prediction. The ROC curves for the 
radiomic model and ACR Lung-RADS. The AUC value using the 
radiomic model was 0.97, and the corresponding value using ACR 
Lung-RADS was 0.77. ROC, receiver operating characteristic; 
AUC, area under the curve.
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kurtosis and reduced skewness in malignant nodules may be 
related to the greater heterogeneity than benign nodules, 
although they appear to be uniformly solid nodules on CT 
images. These differences in internal density homogeneity 
are reflected by the differences in the kurtosis measurements 
but are not detected by conventional visual assessments.

We used the non-redundant radiomic features to build 
a predictive model, which were helpful for qualitative 
diagnosis of SSPNs with an overall accuracy of 89.8%. 
As far as we know, a radiomic analysis focusing on small 
solid lung nodules (6–15 mm) has not been thoroughly 
investigated. Given that a small nodule has much fewer 
specific image features, and solid lung cancers usually 
progress faster than sub-solid ones, it follows that a 
differential diagnosis of small solid nodules using a 
robust approach including the newly emerging radiomic 
methods may help improve the treatment of lung 
cancer. We compared our model with the ACR Lung-
RADS system which has been widely used in lung cancer 
screening (15). In the data set used in the current study, 
the radiomic model outperformed the ACR lung RADS 
approach, which was consistent with another report (13).  
However, our predictive radiomic model had higher 
accuracy and sensitivity due to the fact that it included not 
only shape and density features, but also volumetric high-
order texture information undetectable to the human eye. 
The discrepancy between the two studies may also be related 

to differences in sample size and radiomic algorithms. 
Furthermore, the focus of our study on small solid nodules 
may also account for these differences.

The segmentation of the lesion is the most challenging 
aspect  o f  rad iomic  eva lua t ion .  Cons ider ing  the 
complementary nature of the manual and automatic 
approaches, segmentation can be improved with computer-
aided edge detection followed by manual rectification (25). 
Despite this advantage, we segmented all nodules manually 
because our software cannot segment nodules semi-
automatically. As the report showed, high ICC implied 
that the features are not very sensitive to the underlying 
segmentation (26). We chose three morphological features, 
Maxi3DDiameter, surface area, and volume, in evaluating 
the inter-observer variation, in order to ensure that the 
method of our segmentation and calculation was stable. 
The high inter-observer agreement confirmed that the 
manual segmentation was robust, and consistent with 
those found in other reports (27-29). Balagurunathan 
et al. reported that the texture features in the manual 
segmentation were repeatable (30). Pre-procession, such 
as resampling, is usually used in radiomics analysis to 
minimize the variability in feature values due to differing 
voxel sizes. However, we did not use this approach 
considering that applying pre-processing methods like the 
resampling approach may add bias to the information of 
original images, such as in cases where the smaller grey 

Figure 5 The predictive results of the radiomic model and the ACR Lung-RADS in four cases. Cases (A) and (C) are benign nodules, while (B) 
and (D) are malignant nodules.
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level bound leads to better shape information but worse 
texture information.

There were several limitations in this study including 
the relatively small sample size. Firstly, it is generally 
understood that within the field of radiomics the accuracy 
of results are highly dependent on the amount of data and 
the consistency of the parameters used to produce the 
images. However, the majority of radiomics studies were 
based on retrospective analysis, and image parameters vary 
across different research institutions. In order to build 
practical radiomic models, multiple larger data bases and 
multi-center prospective studies are required. Secondly, 
the majority of lung nodules in the current study were 
less than 10 mm which might have caused error in the 
extraction of high-throughput quantitative features on 
small targets. Nevertheless, we found reliable data showing 
that extracting more features on small targets is durable, 
a result similar to that of a previous study on small 
pulmonary nodules which had satisfactory results (13). 
Because the techniques of image segmentation and feature 
extraction have matured in recent years, only GLCM and 
RLM features are affected by small ROI size as step size 
needs to be considered in relation to pixel number in the 
target. In our study, we did not find any target size smaller 
than the limit of the matrix step. Thirdly, we only used 
radiomics to do the image analysis on a small sample size. 
With machine learning being used successfully in recent 
studies (31,32), we hope to compare the two analysis 
approaches in the near future when larger scale screening 
data are available.

In conclusion, with this radiomic model, it is possible 
to predict malignant solid nodules 6–15 mm in diameter at 
baseline LDCT screening for lung cancer.
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