Introduction

Over the past 25 years, measurements of biochemical markers of bone turnover and bone mineral density (BMD) have assumed an important role in trials of new treatments for osteoporosis (1-12), and are often regarded as surrogate measures of the effectiveness of fracture prevention therapies (13). Bone turnover markers (BTM) such as serum procollagen type I N propeptide (PINP), bone alkaline phosphatase (bone ALP) and urinary cross-linked N-telopeptides of type I collagen (U-NTX) (14) have advantages that they are easily measured in blood or urine and can demonstrate the effect of anti-fracture treatment on bone formation or resorption within 1 week to 3 months of the start of treatment (13,15). However, measurements of BTM are not site specific and respond to the changes in bone turnover occurring throughout the entire skeleton. In contrast, measurements of BMD using dual-energy X-ray absorptiometry (DXA) have the advantage that they can be measured directly at important fracture sites such as the hip and spine, but the disadvantage that it can take 2 years or more to evaluate the full effect of treatment on bone mass (1-12).

Review Article

Site specific measurements of bone formation using $[^{18}\text{F}]$ sodium fluoride PET/CT

Glen M. Blake1, Tanuj Puri1, Musib Siddique1, Michelle L. Frost2, Amelia E. B. Moore3, Ignac Fogelman4*

1Biomedical Engineering Department, King’s College London, Strand, London UK; 2Department of Radiology, Royal Marsden Hospital, Sutton, Surrey, UK; 3Osteoporosis Research Unit, 4Nuclear Medicine Department, King’s College London, Guy’s Campus, London, UK

Correspondence to: Glen M. Blake. Osteoporosis Research Unit, King’s College London, Guy’s Campus, London SE1 9RT, UK.
Email: glen.blake@kcl.ac.uk.

Abstract: Dynamic positron emission tomography (PET) imaging with fluorine-18 labelled sodium fluoride ($[^{18}\text{F}]\text{NaF}$) allows the quantitative assessment of regional bone formation by measuring the plasma clearance of fluoride to bone at any site in the skeleton. Today, hybrid PET and computed tomography (CT) dual-modality systems (PET/CT) are widely available, and $[^{18}\text{F}]\text{NaF}$ PET/CT offers a convenient non-invasive method of studying bone formation at the important osteoporotic fracture sites at the hip and spine, as well as sites of pure cortical or trabecular bone. The technique complements conventional measurements of bone turnover using biochemical markers or bone biopsy as a tool to investigate new therapies for osteoporosis, and has a potential role as an early biomarker of treatment efficacy in clinical trials. This article reviews methods of acquiring and analyzing dynamic $[^{18}\text{F}]\text{NaF}$ PET/CT scan data, and outlines a simplified approach combining venous blood sampling with a series of short (3- to 5-minute) static PET/CT scans acquired at different bed positions to estimate $[^{18}\text{F}]\text{NaF}$ plasma clearance at multiple sites in the skeleton with just a single injection of tracer.

Keywords: $[^{18}\text{F}]$ sodium fluoride ($[^{18}\text{F}]\text{NaF}$); bone blood flow; bone formation; bone plasma clearance; metabolic bone disease; osteoporosis; osteoporosis therapy; positron emission tomography (PET); quantitative imaging; standardised uptake value

Submitted Nov 01, 2017. Accepted for publication Dec 21, 2017.
doi: 10.21037/qims.2018.01.02

View this article at: http://dx.doi.org/10.21037/qims.2018.01.02

*Deceased.
Blake et al. ([18]F)NaF PET/CT measurements of bone formation

It would be useful for the early phases of drug development to have a technique that can measure site specific changes in response to treatment on a shorter time scale than DXA scanning, say 3 months instead of 2 years. Since the primary aim of osteoporosis treatment is to prevent hip fractures, the ideal site to measure is the femoral neck or total hip region of interest (ROI) used in DXA. Such measurements could provide useful input to decisions to proceed from phase II to phase III trials and help avoid late stage attrition. Although the assessment of bone turnover using bone biopsy with double tetracycline labelling still has an important role in the evaluation of the safety and mechanism of action of new anti-fracture drugs (16-21), bone biopsy studies are limited by their restriction to the iliac crest, their relatively invasive nature, the need for a skilled and experienced practitioner, and the difficulty of obtaining both baseline and follow-up studies in the same subjects.

In the past, radioisotopes have provided an alternative method of studying bone turnover, and there is a large historical literature based on the use of bone seeking radionuclides such as [32]P, [90]Ca, [85]Ca and [85]Sr in non-imaging tracer studies (22-25). Today, quantitative studies of bone using radionuclides are based around medical imaging using either hybrid positron emission tomography and computed tomography (PET/CT) dual-modality systems (26) or the gamma camera (27). The use of short half-life tracers such as fluoetine-18 sodium fluoride ([18]F)NaF, T1/2 =110 min) for PET, or technetium-99m methylene diphosphonate ([99mTc]TcMDP, T1/2 = 6 hours) for gamma camera imaging, ensures that the radiation dose to subjects is kept as low as possible. These techniques are attractive because they provide quantitative measurements of bone formation rate at specific sites in the skeleton (26,27), subject only to the limitations set by spatial resolution.

Historical studies using autoradiography showed that bone seeking tracers such as [18]F)NaF and [99mTc] TcMDP are laid down on the surface of newly forming hydroxyapatite crystals at sites of bone formation (28-30). Hence measurements of the uptake of tracer into bone reflect the amount of actively mineralizing bone present, and the aspect of bone turnover being studied relates to osteoblastic activity. Several recent studies have shown significant correlations between the regional plasma clearance of [18]F)NaF and bone formation rate (31) and mineral apposition rate (32,33). A striking visual confirmation of how bone tracers are laid down exclusively at sites of newly forming bone was provided by X-ray fluorescence imaging of bone biopsy specimens obtained after treatment of osteoporotic women with stable strontium ranelate (34). However, it is important to note that, for all types of radionuclide studies, blood flow is a rate-limiting step controlling uptake (35). If the first pass extraction efficiency of a tracer attains its maximum possible value of 100%, then the measurements purely reflect blood flow. Hence it is important to bear in mind that in general the changes in bone tracer kinetics found in radionuclide studies can be due to changes in either bone blood flow, or osteoblastic activity, or a combination of both.

This article reviews techniques for quantitative radionuclide imaging of bone suitable for research studies and clinical trials in the field of osteoporosis, with emphasis on [18]F)NaF PET/CT. We begin by discussing the advantages of [18]F)NaF PET/CT compared with gamma camera studies using [99mTc]TcMDP. Then we review the Hawkins method of performing quantitative [18]F)NaF studies based on a 60-minute dynamic PET scan (26), and discuss a simplified approach to image acquisition and analysis which, with little loss of accuracy or precision, enables the same information to be obtained from a single short (3- to 5-minute) static scan acquired 45 to 75 minutes after tracer injection (36,37). The advantage of the static scan approach is that, with a series of short acquisitions made at different bed positions, quantitative measurements of bone plasma clearance can be made at multiple sites in the skeleton with only a single injection of [18]F)NaF.

Advantages of [18]F)NaF PET imaging

The first quantitative use of a radionuclide imaging agent to investigate various types of metabolic bone disease, including osteoporosis, was the 24-hour [99mTc]TcMDP whole-body retention test developed by Fogelman et al. (38). The test originally required a whole-body counter but, because few of these remain in use today, it was adapted for the dual-headed gamma camera by Brenner et al. (39). It was further refined by Moore et al., who added blood sampling to measure [99mTc]TcMDP plasma clearance and made measurements in several sub-regions of the skeleton including the skull, arms, legs, spine and pelvis (Figure 1A) (27).

The bone imaging agent [18]F)NaF was first described by Blau et al. (42). Although its 511 keV positron annihilation gamma rays are unsuitable for the gamma camera, its properties make it the ideal bone agent for PET imaging. Over the last decade [18]F)NaF PET/CT has become widely
recognized as the optimum radionuclide imaging technique for the investigation of metastatic and metabolic bone disease due to the superior properties of 18FNaF as a bone-seeking tracer and the better spatial resolution of PET scanners compared with either planar or single photon emission computed tomography (SPECT) (Figure 1) (43-51). The advantages of 18FNaF for quantitative imaging of the skeleton include its exceptionally high and rapid uptake into bone, its rapid clearance from soft tissue, and the absence of any protein binding in the circulation (40). But the technique has some important limitations. PET/CT is an expensive technology compared with DXA or BTM, and the radiation dose to the subject is high despite the short half-life of 18FNaF. The cost limits the number of subjects that can be enrolled in a study, and radiation dose the activity of 18FNaF administered and the number of follow-up scans that can be performed.

Quantitative 18FNaF PET imaging—the Hawkins method

The 60-minute dynamic 18FNaF PET scan method described by Hawkins et al. (26) was the first radionuclide imaging technique to measure bone plasma clearance, and has since been widely employed in other studies (41,52-60). Plasma clearance measurements differ from the standardised uptake values (SUV) (61) conventionally measured by PET in that the rate of uptake of tracer to an organ is normalized to its concentration in arterial plasma. For example, glomerular filtration rate (GFR) expresses kidney function in terms of the volume of plasma required to transport the mass of tracer (conventionally inulin) excreted by the kidneys in a 1-minute time interval and is measured in units of mL·min$^{-1}$. For PET studies, plasma clearance is expressed as the clearance per mL of tissue, and
Table 1 Protocol for 18FNaF PET imaging using the Hawkins method (26)

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>60-minute dynamic study on PET/CT scanner</td>
<td></td>
</tr>
<tr>
<td>Frame times: twenty-four 5-second, four 30-second and fourteen 240-second frames</td>
<td></td>
</tr>
<tr>
<td>Patient preparation: patient should be well hydrated and comfortable</td>
<td></td>
</tr>
<tr>
<td>CT scan for attenuation correction and defining bone ROIs</td>
<td></td>
</tr>
<tr>
<td>Patient positioning:</td>
<td></td>
</tr>
<tr>
<td>Spine: L1–L4 including bottom of T12 and top of L5</td>
<td></td>
</tr>
<tr>
<td>Hip: 1 cm above acetabulum to mid femoral shaft</td>
<td></td>
</tr>
<tr>
<td>Injected activity: 90 MBq (spine) or 180 MBq (hip) 18FNaF in 10 mL saline</td>
<td></td>
</tr>
<tr>
<td>Injection protocol:</td>
<td></td>
</tr>
<tr>
<td>T0: start dynamic scan</td>
<td></td>
</tr>
<tr>
<td>T0 + 10 seconds: start injection of 18FNaF</td>
<td></td>
</tr>
<tr>
<td>T0 + 20 seconds: finish injection. Follow with 10 mL saline flush</td>
<td></td>
</tr>
<tr>
<td>T0 + 30 seconds: finish saline flush</td>
<td></td>
</tr>
<tr>
<td>Measurement of arterial input function:</td>
<td></td>
</tr>
<tr>
<td>Either: direct arterial sampling using a blood line</td>
<td></td>
</tr>
<tr>
<td>Or: image derived input function from aorta or femoral artery</td>
<td></td>
</tr>
<tr>
<td>Or: semi-population input function with venous blood samples at 30, 40, 50 and 60 minutes after injection</td>
<td></td>
</tr>
</tbody>
</table>

PET, positron emission tomography; CT, computed tomography; ROI, region of interest.

the units are mL·min$^{-1}$·mL$^{-1}$.

The advantage of the Hawkins method is that it provides a complete quantitative description of regional bone tracer kinetics in the first 60 minutes following a bolus injection of tracer (62). The method is summarized in Table 1. PET/CT scanners have a limited axial field of view (~15 cm), so the dynamic scan is restricted to the lumbar spine (Figure 1B), or hip (Figure 1C), or any similar sized ROI. Following positioning of the subject, a low mA CT scan is acquired for attenuation correction of the PET images, and can also help with the definition of the bone ROIs during scan analysis. After this a 10 mL injection of 18FNaF is administered, and acquisition of the 60-minute dynamic PET scan commenced. A scan protocol consisting of twenty-four 5-second frames, four 30-second and fourteen 240-second (total time 60 minutes) gives adequate information about the bone uptake curve (Figure 2A).

To calculate the plasma clearance of fluoride to bone it is also necessary to measure the arterial input function (AIF) (Figure 2A), and this can be done either by direct sampling using an arterial line (52,53,56,62), or by using an image derived input function from an ROI placed over the aorta or femoral artery (53,55,62-64), or by using a semi-population method using serial venous blood samples taken 30–90 minutes after injection (65). Of these three approaches, direct arterial sampling is the preferred method for the most reliable results, while the semi-population method is simple and convenient as it involves taking only 3 or 4 blood samples. Once the AIF is known it is combined with the bone time-activity curves (TACs) for the various ROIs defined on the dynamic PET scan to determine the plasma clearance in each ROI. Both the AIF and the bone TACs require correction for the radioactive decay of 18F NaF back to the time of injection.

Once the AIF and TACs have been determined, they are analysed using the Hawkins compartmental model (Figure 2B) to find the effective plasma flow (K_i) and the plasma clearance to the bone mineral compartment (K) in each ROI (26). In the Hawkins model the rate constant K_i describes the clearance of 18FNaF from plasma to the unbound bone pool, and is measured in units of mL·min$^{-1}$·mL$^{-1}$ (58). Regional bone blood flow can be estimated from K_i knowing the packed cell volume and the first pass extraction of 18FNaF, which is often assumed to be 100% (66,67). The rate constant k_3 in Figure 2B describes the reverse flow of tracer from the unbound bone pool to plasma in terms of the fraction of tracer in the unbound bone pool transported per minute (typical value ~0.4 min$^{-1}$). Similarly k_1 (~0.2 min$^{-1}$) describes the forward transport from the unbound bone pool to bone mineral, and k_4 (~0.01 min$^{-1}$) the reverse flow from bone mineral to the unbound bone pool. The parameter K_i represents the net plasma clearance of 18F NaF to the bone mineral compartment and is calculated from the following equation (26):

$$K_i = K_i \times k_1/(k_2 + k_3) \text{ mL·min}^{-1}·\text{mL}^{-1}$$ \hspace{1cm} [1]

In Eq. [1], the ratio $k_1/(k_2 + k_3)$ represents the fraction of tracer initially cleared to the unbound bone pool that binds to bone mineral. As mentioned above, changes in K_i in response to treatment can reflect changes in either bone blood flow or bone formation rate. The form of Eq. [1] suggests that a change in bone formation rate will cause a change in the value of $k_1/(k_2 + k_3)$ by increasing the value...
of k_3. A fifth free parameter, the fraction of the bone ROI occupied by blood, F_{in}, can be added to improve the fit to the data in the first 30 seconds after injection of tracer.

Figure 2C shows the results of fitting the bone TAC and AIF to the Hawkins model in terms of time plots of the amount of tracer in each compartment of the model. The fit to the model is obtained by varying the values of K_1, k_2, k_3, and F_{in} until the predicted bone TAC gives the best fit to the measured curve. The value of K_1 is then calculated using Eq. [1].

Figure 3A shows measurements of the precision error of each parameter in the Hawkins model expressed as the coefficient of variation derived from repeat PET scans of the lumbar spine over a 12-month period (68), and Figure 3B the percentage change in each parameter in response to 6-months treatment with teriparatide (68). By dividing treatment response by the precision error we obtain a measure of the statistical utility of each model parameter for measuring response to treatment (Figure 3C). In practice, of the various parameters measured by the Hawkins model K_1 has the best precision, and experience shows that generally it is the most robust for measuring response to treatment. Following treatment with teriparatide the parameters $k_3/(k_2 + k_3)$ and k_4 also showed statistically significant changes in response to treatment, but not K_1, k_2 or k_4 (Figure 3B).

Overall, the changes are consistent with teriparatide treatment increasing osteoblastic activity, but not bone blood flow.

Alternative methods to the Hawkins model for analyzing the AIF and bone TACs include deconvolution and spectral analysis (68). A fourth method, the Patlak plot, is described below.

Why measure bone plasma clearance?

The most common approach to quantifying PET images, for example in oncology, is to measure SUV (61). SUVs offer a simple method to express the uptake of PET tracers in tumours by taking the activity concentration in the ROI in kilo becquerels per millilitre (kBq/mL) and normalizing for injected activity and the subject’s body weight [SUV = kBq/mL body weight (kg)/injected activity (MBq)]. In oncology studies, uptake in tumours is frequently heterogeneous and the maximum SUV (SUV$_{max}$) is often reported. But in studies of metabolic bone diseases such as osteoporosis, where the uptake in bone is more uniform, it is preferable to smooth out the pixel-to-pixel noise in the image by expressing the SUV as the mean value in the bone ROI rather than the maximum.

For PET studies of bone, does it matter whether...
we choose to measure SUV or plasma clearance? The limitation of measuring SUVs is that only a finite amount of tracer is administered to the patient, and this has to be shared out between the various competing tissues. In the case of $[^{18}\text{F}]\text{NaF}$, these include the kidneys and other regions of the skeleton. If a patient is treated with a potent bone anabolic agent such as teriparatide (69), or has extensive metastatic bone disease (70), or a large area of active Paget’s disease (71), the $[^{18}\text{F}]\text{NaF}$ plasma concentration will be reduced by the increased competition for tracer, resulting in a reduced measurement of SUV. As an example, in a $[^{18}\text{F}]\text{NaF}$ PET study of osteoporotic women taking teriparatide, after 6-months treatment the 1-hour $[^{18}\text{F}]\text{NaF}$ plasma concentration was 21% lower than at baseline (69). Although measurements of K_i were 24% higher than baseline values, a highly statistically significant change ($P=0.0003$), values of SUV were only 3% higher and were not significantly different from baseline ($P=0.84$). Experience with other bone tracers confirms this phenomenon. In a trial of $[^{89}\text{Sr}]\text{SrCl}_2$ therapy, after 6-months treatment the ‘superscan’ was only 30% of values found in subjects with only a few small areas of metastatic bone disease (70). Plasma concentration of $[^{99}\text{mTc}]\text{TcMDP}$ was similarly reduced in a patient having a gamma camera bone scan for extensive Paget’s disease (71).

It follows that measurements of a change in SUV at a particular site partly reflect the changes in bone formation occurring at other sites in the skeleton. In contrast, plasma clearance measurements are free of this limitation because the uptake is expressed relative to the arterial concentration of tracer actually delivered to tissue rather than the amount of tracer injected. In studies of osteoporosis treatments that have a potent effect on whole skeleton bone formation, or subjects with extensive Paget’s or metastatic bone disease, plasma clearance can be a more reliable indicator of site-specific bone function than SUV (69).

Determination of bone plasma clearance using the Patlak plot

Provided that the Hawkins model rate constant k_i is negligibly small, Patlak analysis provides a simple alternative graphical method of measuring K_i (Figure 4A) (36). At time T after injection of tracer the concentration in the bone ROI, $C_p(T)$, is expressed by the following equation:

$$\frac{C_p(T)}{C_p(0)} = V + K_i \int_0^T \frac{C_p(t)dt}{C_p(T)}$$ \[2\]

where C_p is the concentration of tracer in plasma and the intercept of the straight line, V, is the volume of distribution in the unbound bone pool. To allow for equilibration...
Normalised bone uptake $[^{18}F]$NaF plasma concentration (kBq/mL)

Patlak graphical analysis estimating k_i from a 60-minute dynamic scan

Residual function
Terminal exponential

$[^{18}F]$NaF PET data obtained during a 60-minute dynamic scan. The graph is a plot of normalized bone uptake $\left(\frac{C_b(T)}{C_p(T)} \right)$ against normalized time $\left(\int_0^T C_b(t) \, dt / C_p(T) \right)$ (see Eq. [2]). Bone plasma clearance (K_i) is found from the slope of the straight-line fit to the 10–60 minutes data points. The intercept on the vertical axis gives the volume of distribution V. Reproduced with permission from (40).

Evaluation of k_{loss} by the modified Patlak analysis of Holden et al. (72). Triangles, schematic plot of the standard analysis ($k_{\text{loss}} = 0$) applied to 10–60 minutes dynamic scan data. Circles, modified analysis (Eqs. [3] and [4]) with the value of k_{loss} optimized to give the best straight-line fit to the 10–60 minutes data points. Squares, modified Patlak analysis over corrected for k_{loss}. Reproduced with permission from (37).

Derivation of the semi-population input function. The population residual function is scaled for injected activity and the time of peak counts adjusted to agree with a region of interest drawn over the aorta for dynamic PET scan data or to the time of injection for static scans. This curve is added to the terminal exponential fitted to the 30-, 40-, 50- and 60-minute venous plasma data. The terminal exponential is rolled off using a ramp function at the time of peak counts so as not to affect the early rise of the bolus. Reproduced with permission from (65).

Derivation of bone plasma clearance using the simplified static-scan method (36, 37). The right upper point is based on a measurement of bone uptake from a single 5-minute static scan acquired around 45–75 minutes after injection of tracer. The left lower point is the intercept of the graph and represents the population average volume of distribution V. The value of K_i is obtained from the slope of the straight line through the two points. Reproduced with permission from (40). $[^{18}F]$NaF, fluorine-18 labelled sodium fluoride; PET, positron emission tomography.

Figure 4 Quantitative analysis using the Patlak plot. (A) Standard Patlak analysis (i.e., assuming $k_{\text{loss}} = 0$) of $[^{18}F]$NaF PET data obtained during a 60-minute dynamic scan. The graph is a plot of normalized bone uptake $\left(\frac{C_b(T)}{C_p(T)} \right)$ against normalized time $\left(\int_0^T C_b(t) \, dt / C_p(T) \right)$ (see Eq. [2]). Bone plasma clearance (K_i) is found from the slope of the straight-line fit to the 10–60 minutes data points. The intercept on the vertical axis gives the volume of distribution V. Reproduced with permission from (40). (B) Evaluation of k_{loss} by the modified Patlak analysis of Holden et al. (72). Triangles, schematic plot of the standard analysis ($k_{\text{loss}} = 0$) applied to 10–60 minutes dynamic scan data. Circles, modified analysis (Eqs. [3] and [4]) with the value of k_{loss} optimized to give the best straight-line fit to the 10–60 minutes data points. Squares, modified Patlak analysis over corrected for k_{loss}. Reproduced with permission from (37). (C) Derivation of the semi-population input function. The population residual function is scaled for injected activity and the time of peak counts adjusted to agree with a region of interest drawn over the aorta for dynamic PET scan data or to the time of injection for static scans. This curve is added to the terminal exponential fitted to the 30-, 40-, 50- and 60-minute venous plasma data. The terminal exponential is rolled off using a ramp function at the time of peak counts so as not to affect the early rise of the bolus. Reproduced with permission from (65). (D) Derivation of bone plasma clearance using the simplified static-scan method (36, 37). The right upper point is based on a measurement of bone uptake from a single 5-minute static scan acquired around 45–75 minutes after injection of tracer. The left lower point is the intercept of the graph and represents the population average volume of distribution V. The value of K_i is obtained from the slope of the straight line through the two points. Reproduced with permission from (40). $[^{18}F]$NaF, fluorine-18 labelled sodium fluoride; PET, positron emission tomography.
between tracer in plasma and the unbound bone pool in the first 10 minutes after injection, the values of K_i and V are determined by fitting a straight line to the 10–60 minutes data. A limitation of the Patlak method is that it provides measurements of for K_i but not K_r or the other parameters of the Hawkins model.

In practice the assumption that k_b is negligibly small is not strictly valid. As a consequence the points of the Patlak plot deviate slightly from a straight line (Figure 4A) and the resulting K_i measurements underestimate the Hawkins model values by around 25% on average. This problem can be avoided by using a modified Patlak analysis that introduces a rate constant k_{loss} to represent the backflow of tracer out of the bone mineral compartment and into plasma (37). Following the method described by Holden et al. (72), Eq. [2] is rewritten as:

$$\frac{C_b(T)}{C_p(T)} = V + K_i \theta(T)$$ \[3\]

where:

$$\theta(T) = \int_0^T \frac{C_p(t) \exp[-k_{loss}(T-t)]}{C_p(T)} dt$$ \[4\]

In this modified analysis the rate constant k_{loss} is varied until the plot of normalized activity $\frac{C_b(T)}{C_p(T)}$ against normalized time $\theta(T)$ from 10–60 minutes after injection gives the best fit to a straight line (Figure 4B). Siddique applied the Holden method to 60-minute dynamic PET scans of the spine and hip and reported values of k_{loss} ~0.006 min$^{-1}$ at both sites along with values for the volume of distribution V (Table 2) (37).

A simplified method for [18F]NaF PET image acquisition and analysis

A full 60-minute dynamic PET scan is demanding for the patient, expensive in terms of scanner time and, because of the limited axial field of view of the PET scanner, only one bed position at a single skeletal site can be studied for each injection of [18F]NaF. To make studies simpler it would be helpful to have an alternative method that is easier for the patient, less expensive, and which enables K_i to be measured at multiple sites in the skeleton with a single injection of [18F]NaF. A method proposed by Siddique et al. (Table 3) meets these requirements with little loss of accuracy or precision compared with the standard Hawkins method (36,37).

In this alternative method, the AIF is found by measuring the terminal exponential by taking 3 or 4 venous blood samples starting 30 minutes after injection of tracer and adding a population derived residual curve to represent the early bolus peak and fast exponentials (Figure 4C) (65). For each individual PET scan, the residual curve is added to the terminal exponential after first scaling for injected activity and adjusting the origin to the time of injection. By 30 minutes the concentrations of tracer in arterial and venous blood have equalized, and by taking venous samples at 30, 40, 50 and 60 minutes the terminal exponential [which accounts for 75% of the area under the plasma curve in the first 60 minutes after injection (65)] can be reliably measured. However, this semi-population method of finding the AIF is not suitable for measuring K_r, which requires an individual measurement of the AIF in each subject in the first few minutes after injection.

In Siddique's method, the measurement of K_i is made by combining the information about the AIF derived from the semi-population method with a measurement of regional bone uptake from a single 3- to 5-minute static PET scan acquired around 60 minutes after injection (Table 3) (36). The value of K_i is found from a simplified Patlak plot consisting of just two data points (Figure 4D), representing the measured tracer concentration in the bone ROI at the time of the single static scan and the population value of the intercept V (Table 2). Rearranging Eq. [3] we have:

Table 2 Results of a study of 60-minute dynamic [18F]NaF PET scans of the spine and hip using the modified Patlak analysis of Holden et al. (72) to determine the mean values of k_{loss} and V at each site (37)

<table>
<thead>
<tr>
<th>Skeletal site</th>
<th>N</th>
<th>k_{loss} (min$^{-1}$), mean (SD)</th>
<th>V, mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spine</td>
<td>36</td>
<td>0.0057 (0.0022)</td>
<td>0.22 (0.13)</td>
</tr>
<tr>
<td>Total hip</td>
<td>54</td>
<td>0.0056 (0.0034)</td>
<td>0.09 (0.07)</td>
</tr>
<tr>
<td>Femoral shaft</td>
<td>54</td>
<td>0.0067 (0.0038)</td>
<td>0.11 (0.07)</td>
</tr>
</tbody>
</table>
The normalized time $\theta(T)$ is calculated from the semi-population AIF assuming a value of $k_{\text{loss}}=0.006 \text{ min}^{-1}$ (Table 3) (37). A limitation of the static scan method is that it is not possible to measure K_i. However, performing a short (~5 to 10 minutes) dynamic scan at the time of injection would enable K_i to be measured at a single site. The chief advantage of the static scan method is that with a series of short scans acquired at different bed positions it is possible to measure K_i at several different skeletal sites with just a single injection of $[^{18}\text{F}]\text{NaF}$ (36,37).

Conclusions

Quantitative $[^{18}\text{F}]\text{NaF}$ PET imaging provides a novel way to study regional bone formation rate that complements conventional measurements with BTM as a tool to investigate new treatments for osteoporosis, and has potential as an early biomarker of treatment efficacy for use in clinical trials. Unlike BTM, which measure the response to treatment across the entire skeleton, $[^{18}\text{F}]\text{NaF}$ PET can distinguish the changes occurring at sites of particular interest for fracture prevention such as the hip and spine, or the difference in response between trabecular and cortical bone. Dynamic $[^{18}\text{F}]\text{NaF}$ PET scans measure effective bone plasma flow and bone plasma clearance of fluoride, but with a single injection of tracer the information is restricted to a single bed position by the narrow axial field of view of the PET scanner. In contrast, a series of short static PET scans at different bed positions combined with venous blood sampling can be used to estimate plasma clearance at multiple sites in the skeleton with a single injection. Studies to date have examined the accuracy and reproducibility of $[^{18}\text{F}]\text{NaF}$ PET measurements in osteoporosis, confirmed that the changes seen during treatment are biologically plausible, and suggested ways to shorten and simplify image acquisition and analysis. The next steps required are studies to link the changes in K_i with clinical endpoints such as the change in fracture risk and the identification of responders and non-responders. These could be undertaken as multi-centre sub-studies in Phase III clinical trials and will require further work relating to quality control and the standardization of image acquisition and analysis.

Acknowledgements

GM Blake, ML Frost and I Fogelman have received research grants from Novartis, Eli Lilly and Warner Chilcott.

Footnote

Conflicts of Interest: The authors have no conflicts of interest to declare.

Dedication: This article is dedicated to the late Professor Ignac Fogelman, an outstanding mentor and friend, who died 5 July 2016.
References

58. Doot RK, Muzi M, Peterson LM, Schubert EK, Gralow JR, Specht JM, Mankoff DA. Kinetic analysis of...

