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Background: Over the last decade, several theoretical tumor-models have been developed to describe 
tumor growth. Oncology imaging is performed using various modalities including computed tomography 
(CT), magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT) and 
fluorodeoxyglucose-positron emission tomography (FDG-PET). Our goal is to extract useful, otherwise 
hidden, quantitative biophysical parameters (such as growth-rate, tumor-necrotic-factor, etc.) from these 
serial images of tumors by fitting mathematical models to images. These biophysical features are intrinsic 
to the tumor types and specific to the study-subject, and expected to add valuable information on the tumor 
containment or spread and help treatment plans. Thus, fitting realistic but practical models and assessing 
parameter-errors and degree of fit is important. 
Methods: We implemented an existing theoretical ode-compartment model and variants and applied 
them for the first time, in vivo. We developed an inversion algorithm to fit the models for tumor growth for 
simulated as well as in vivo experimental data. Serial SPECT/CT scans of mice breast-tumors were acquired, 
and SPECT data was used to segment the proliferating-layers of tumors. 
Results: Results of noisy data simulation and inversion show that 5 out of 7 parameters were recovered to 
within 4.3% error. In particular, tumor “growth-rate” parameter was recovered to 0.07% error. For model 
fitting to in vivo mice-tumors, regression analysis on the P-layer volume showed R2 of 0.99 for logistic and 
Gompertzian while surface area model yielded R2=0.96. For the necrotic layer the R2 values were 0.95, 0.93 
and 0.94 respectively for surface-area, logistic and Gompertzian. The Akaike Information Criterion (AIC) 
weights of the models (giving their relative probability of being the best Kullback-Leibler (K-L) model 
among the set of candidate models) were ~0, 0.43 and 0.57 for surface-area, logistic and Gompertzian 
models. 
Conclusions: Model-fitting to mice tumor studies demonstrates feasibility of applying the models to  
in vivo imaging data to extract features. Akaike information criterion (AIC) evaluations show Gompertzian or 
logistic growth model fits in vivo breast-tumors better than surface-area based growth model. 
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Introduction

Oncology imaging is performed using various modalities 
including computed tomography (CT), magnetic resonance 
imaging (MRI), single-photon emission computed 
tomography (SPECT) and fluorodeoxyglucose-positron 
emission tomography (FDG-PET).Quantification of 
cancer from images is important for assessment of disease 
progress and treatment. Tumors grow in a specific way 
and theoretical tumor-models of increasing complexity 
have been developed that may be potentially used to 
find (otherwise concealed) biophysical information from 
serial images of tumors. If accurate, tumor growth-
rate, cell-motility (diffusion), tumor-necrotic-factor, can 
be consistently and reliably extracted from oncological 
images, they may add valuable information on the tumor 
containment/spread and help treatment plan. For example, 
assessing the growth-rate accurately will help in treatment 
planning whether in surgery or in determining the number 
of fractions and dose of radiotherapy. Biological research 
shows tumor-necrotic-factor may have a stabilizing effect 
on proliferating cells (1). Applying equations to images of 
tumor density, accounting for cell-motility and proliferation 
of glioma tumors have shown promise in therapy evaluation, 
as well as in vitro analysis (2-4), and has been used to 
register patient scans to brain atlas (5,6).

However, research on in vivo image analysis using 
mathematical models-fitting image datasets (clinical or even 
pre-clinical) to extract quantification parameters for subject-
specific tumor-characterization is sparse. Recently pre-
clinical experiments to predict volume (7) and metastasis (8) 
have been performed. In (7) several classical existing tumor-
volume growth models (such as logistic, Gompertzian 
etc.) were considered and compared with extracted breast-
and lung tumor volumes of mice measured with calipers. 
For the breast data, the dynamics were best captured by 
the Gompertzian and exponential-linear models (with 
predictive scores of ≥80%). For lung-tumor Gompertz and 
power-law prediction was best, however with prediction 
rate ≤70% and required prior information on parameter 
distribution to improve. In (8) primary and metastatic 
tumor growth models were compared with measurements 
from preclinical images of breast-tumor bearing mice, with 
mixed results: coefficients of determination were R2=0.94 
for primary tumors but only R2=0.57 for metastatic growth. 
Key parameter extraction such as diffusion coefficient, 
growth rate of gliomas was performed on simulated and  
in vivo preclinical images in (9). While the simulation results 

showed low errors, in vivo experimental studies showed 
lower predictive accuracy. With the authors suggesting 
that including intra-tumor effects such as necrosis might 
improve experimental results. Indeed, none of these models 
in (3-9) explicitly incorporate tumor necrosis. However, 
most tumors beyond a certain diameter (~2–5 mm) develop 
necrotic cores, due to lack of nutrient (10-12). Thus necrosis 
formation is an important factor to be accounted for in 
serial images to obtain accurate parameters such as growth-
rate. Necrosis effects have been modeled theoretically by 
moving boundary methods modeling nutrient concentration 
(mainly by oxygen diffusion) (13-17), but on the other hand, 
in these models, typically, tumor cell density or volume 
effects (6-7,18) are not explicitly considered. 

 Another model that incorporates necrosis is the 
theoretical ode-compartment volume model proposed by 
Wallace and Guo (18). In this model, the tumor is assumed 
to be composed of concentric shells of proliferating (P) 
and quiescent layers (Q) with a necrotic core (N). The 
Wallace-Guo model considers an overall effect of necrosis 
on the proliferating layer and may provide a more accurate 
picture of tumor proliferation than models which do not 
consider necrosis. Several different combinations of growth 
and necrosis models are proposed in theory in (18) and 
while some are forward simulated, none are fitted to any 
experimental data. 

In the current work, the theoretical Wallace-Guo model (18)  
for tumor-growth is investigated using in vivo images of 
tumor-bearing mice. The reasons we chose this model is 
that it is comprehensive (with inclusion of classical growth-
models, necrosis and cross-dependence thereof), yet simple 
and robust, making it particularly amenable for use in a 
clinical setting. In addition, being a volume model, it does 
not require explicit voxel-wise correspondence or accurate 
co-registration of data across different time-points that will 
be required for density models. This might be particularly 
important in a clinical setting with several months 
intervening between scanning of patients during which time 
there could be significant weight loss and other changes  
in body. 

 From experimentally acquired mice-tumor images, 
typically a quiescent layer cannot be reliably distinguished 
from the necrosis layer. Therefore, to enable our in vivo 
analysis, we made some small modifications to the main 
structure of the theoretical model in (18) to obtain a two-
compartment version, to better fit the experimental data. 
Also, in addition to the surface-area based and logistic 
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growth considered in (18), we added for consideration a 
Gompertzian growth because of its strong results for in vivo 
use (7).

In the following sections, we develop an inversion 
algorithm for fitting the models, which we test in simulated 
datasets as well as in vivo experimental images. For the 
simulated datasets, we first generated volume data according 
to model equations. After corrupting our generated volumes 
with noise, we perform an assessment in the error of our 
parameter recovery. Then, we fit the experimental in vivo 
mice-tumor data by the two-compartment models. We 
conclude by presenting the results of the Akaike information 
criterion (AIC) evaluations on the models.

Methods

Mathematical model and its variants 

Mathematical model and variations used
Eqs. [1-3] shows one of the systems of non-linear 
differential equations proposed by Wallace and Guo (18) 
that attempts to capture the dynamics of tumor growth. 
This three-compartment model includes a Proliferating (P) 
region, a Quiescent (Q) region, and a Necrotic (N) region. 
The model captures the interdependence of the different 
cell pools that make up a tumor with different combinations 
of functions for growth with other terms considered. In (18), 
of the 25 different models explored, the one designated 3E 
was concluded to perform the best, given in the following 
equations. 

( )
2
3 , ,P Q

Q
dp a P Q N bP Q c P fNP d P
dt

= + + − + − − 	 [1]

, , ,P Q Q
Q Q

dQ bP Q c P e N
dt

= − − 	 [2]

, Q
Q

dN e N mN
dt

= − 	 [3]

Note that the growth term in Eq. [1] is proportional 
to surface area of the tumor volume. The α is the growth-
rate parameter, bP,Q defines the rate-factor at which the 

P-cells becomes Q-cell (reducing 
dP
dt

 and increasing dQ
dt

),  

and cQ,P defines the rate at which Q-cells become P-cell. The 
eQ,N defines the necrosis rate of the Q-cells. The f takes into 
account the effect of the N on P, where the necrotic region 
releases substances that reduces the proliferation rate. This 
is expected to be related to the Tumor-Necrosis-Factor 

(TNF). This effect depends on the volume of N as well as P. 
Understandably this affects only the proliferating cells. The 
d and m are the self-slow-down rate of proliferation and 
necrosis respectively. Treatment terms maybe incorporated 
into parameter d.

As mentioned, it will be challenging to distinguish 
between the Q and the N layer from our acquired SPECT/
CT images, (or clinical images over the long-term). Thus 
for the experimental case, we modified the model to a 
two-compartment (P-N) approximation of Eqs. [1-3], 
shown in Eqs. [4,5]. Note that the eP,N describes the (one-
way) process of proliferating cells becoming necrotic and 
the corresponding growth of necrotic shell. The G(P) is a 
general growth function.

( )dP G P fNP d P
dt

= − − 	 [4]

,P N
dN e P mN
dt

= − 	 [5]

While remaining within this Wallace-Guo compartmental 
framework, we also used other forms of the function G(P), 
which is in control of the growth of the proliferating 
cells. This is motivated by the fact that in vivo tumors will 
show different characteristics than spheroids, with growth 
less dependent on outer surface-area and will have other 
population-death characteristics. This gives us three new 
models, as described below. 

Model A: assumes that growth is proportional to the 
surface area of a spheroid (as in Eqs [1-3]): ( ) ( )

2
3G P a P N= +

Model B: utilizes the logistic function to limit the growth 
of P: G(P)= aP – bP2 

Model C: utilizes the Gompertzian function to limit the 
growth of P: G(P)=ae(–bt)P 

Iterative model inversion
Volume data P, Q, N or where appropriate just P and 
N, were fitted to our candidate models by iteratively 
minimizing their weighted residual sum of squares. The 
weighted sum square allows us to weight compartments 
differently when one becomes disproportionately large and 
dominates the minimization. For example, if the necrotic 
layer is too large, unless weighted, it will dominate the sum-
squared-error and might yield results with higher model-
fitting errors in other compartments. At the n-th iteration, 
with parameter set ϕn, let Mc (t, ϕn) be the output of the 
c-th compartment of the model M (t, ϕn), where c denotes 
P,Q,N (Eqs. [1-3]) or P,N (Eqs. [4,5]). The weighted sum 
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squared error, as denoted by the quantity WRSS below is then 
iteratively minimized:

( ){ }
2

1
,

n

SSE c ci c i n
c i

W w y M t φ
=

= −  ∑∑ 	 [6]

where wc is an optional weighting factor for each of the thee 
(or two) compartments P,Q,N (or P, N), yci represents the 
measured volume data obtained at time ti, via experiments 
or simulations, and M (ti, {ϕn}) is the value predicted by the 
model. ϕ is a best fit parameter if it minimizes WSSE, and 
the resulting best-fit parameter vector is denoted by φ̂ .  
Minimization of the WSSE was performed by MATLAB 
(MathWorks, MA, USA) function fmincon, which minimizes 
non-linear multivariable functions.

Assessment of inversion algorithm using simulated data

In order to assess our inversion algorithm, we corrupted 
the forward-model simulation of Model A with 30 cases 
of realistic additive Gaussian noise and inverted the model 
at three selective time points. This allowed us to examine 
how well the inversion algorithm recovered the parameters 
compared to the true parameters. We began by solving the 
three-compartment model given by Eqs. [1-3]. The system 
of ordinary differential equations was solved using the ode 
45 function, in Matlab. The solution was then corrupted 
with additive Gaussian noise. To make this Gaussian noise 
realistic, it was made proportional to the segmentation 
error, in particular, the mean of the partial volumes ΔV+ 
and ΔV– which are the overestimated and underestimated 
compartment volumes by 1 pixel error on either side of the 
boundary. This reflects realistic errors we encountered when 
segmenting experimental data. Thirty noise realizations 
were simulated.

Experimental image acquisition and image processing

Mice experiments and ethics
Three immunodeficient female NSG mice were injected 
with 4T1-hNIS breast cancer cell line from Imanis Life 
Sciences, engineered to overexpress the sodium iodide 
symporter (NIS) gene. They were then injected with Tc99m 
and imaged three times (with at least a 3-day interval for a 
near-complete decay of Tc-99m) with Flex Triumph Micro-
SPECT/CT located in Mathis’s lab, SVM, Louisiana 
State University (LSU). The experiment was repeated 
with seven additional mice of which only three had usable 

datasets with 3 time-points each. All the experiments were 
conducted with strict adherence to protocols approved by 
the Institutional Animal Care and Use Committee (IACUC) 
within LSU. The animals were monitored every other 
day for pain/distress and a scoring system was utilized to 
prevent unnecessary pain/distress. Animals that showed pain 
and/or distress and/or exhibited significant tumor burden, 
significant weight loss (i.e., cachexia greater than 20% of 
initial body weight), tumor ulceration, or impairment were 
euthanized by asphyxiation with CO2. Only one animal 
had to be euthanized after the two time points due to 
significant tumor-burden before she showed any signs of 
distress. At the end of the 3 time-points, all the animals 
were euthanized. From the two sets of experiments, we had 
total of six mice datasets with 3 time-points each to fit our 
models.

No. of time points: due to the 3-day imaging delay required 
for Tc99m decay before re-injection and strict IACUC 
protocols to euthanize the animals before significant tumor-
burden, more than three-time points were infeasible for this 
particular type of tumor.

Segmentation of volumes
The segmentation steps are shown in Figure 1. The 
proliferating (P) layer volumes were semi-automatically 
segmented from SPECT images in 3D using ITK-SNAP 
(19,20), see Figure 1A. The segmentation chosen was the 
semi-automatic 3D segmentation method. The choice of 
automated 3D segmentation was motivated by initial slice-
by-slice hand-segmentation of boundaries, causing un-
evenness in direction orthogonal to slices. The segmentation 
method in ITK-SNAP was smooth with similar levels of 
accuracy in all directions and thus preferred over hand-
segmentation. The threshold to distinguish necrosis versus 
viable tumor cells (the input parameter to ITK-SNAP) 
was chosen via SPECT image histogram analysis over the 
tumor region in ImageJ. As shown in Figure 1B a contour 
was drawn including the boundary between the two regions. 
The threshold value was then chosen at the minima in the 
histogram that separated the intensities in the two zones. 
In all 18 cases (6 mice, 3 time-points) there was a clear 
minimum in the histogram that correlated well with the 
boundary gradient. Figure 1A shows an example-segmented 
tumor (in red). The volume-segmentation was done by the 
same person (Megan E. Chesal), for consistency. 

The engulfed necrotic regions inside the tumors were 
segmented using our own software. Figure 1C uses a 
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combination of morphological “closing” and connected-
component analysis on difference image. Our simple, 
but robust, method works for these complex cases where 
proliferation and necrotic layers are topologically complex 
with necrotic volumes interconnected in tunnels and/or has 
multiple disjointed regions. The segmented P- and N-layer 
volumes are then used in model-fitting.

Goodness-of-fit criterion across different models

To judge the good-ness of fit of the models, one of the 
metrics we considered was the coefficient of determination 
or the R2 statistic. The R2 statistic measures how close the 
fitted regression line approximates the data. The R2 statistic 
was acquired with MATLAB’s built-in function fitlm. An 
R2 value close to 1 indicates that most of the variability in 
the data can be explained by the model M. To calculate this 
measure, we considered all the measured time-points for all 
the experimental datasets. For example, for the experiments 
with mice (described in later section in details), with 6 mice 
at 3 time points, the regression fit between the model and 
the experiments was done using all 6×3=18 time points.

Since increasing the number of independent variables in 
a model can only increase the R2 value (which can lead to 
R2 inflation), we included another fitting metric, capable of 
acting as a safeguard to overfitting. This metric is the AIC 
(21,22): 

( )ln 2 1RSSAIC n PD nD

 
= + +  

 
	 [7]

where nD is the number of data points, and P is the size of 
the parameter vector. The quantity P+1 will be denoted 
as k. The RSS is the residual sum-squared data between 

the model and measurement over all the measurement 
time-points over both layers P and N. The AIC rewards 
goodness-of-fit; but it also penalizes models for adding extra 
parameters, thereby discouraging overfitting. The model 
with the minimum AIC value is the preferred model from a 
set of candidate models. 

Since the AIC is at times prone to choosing more 
complex models when nD is not that much larger than k2, 
(which is true for our case) we also consider the corrected 
version of the AIC which is denoted as AICc (21,22):

( 1)
2

1

k k
AIC AICc n kD

+
= +

− −
	 [8]

The AICC is more stringent in the sense that it exhibits 
harsher penalization for adding extra parameters, and it 
converges to the value of the AIC when nD gets larger. Both 
the AIC and AICc are used to select the “best” Kullback-
Leibler model from a set of different candidate models 
suited for the given data. Once the “best” model is selected, 
further comparisons can be made between it and the other 
models by considering the Akaike differences and the 
Akaike weights. The Akaike difference is denoted as ΔAICC 
(21,22): 

, 1, 2, ,minC for i MC i i CAIC AIC AIC ...= = − =∆ ∆ 	 [9]

where AICCi denotes the AIC value for model i and AICCmin 
the minimum of the AICC values for the M different models. 
The “best” model, of course, has Δi=0. If a model has Δi less 
than 7, it has plausible support. If it has Δi between 7 and 
11, it has little support, and any model with Δi greater than 
14, has essentially no support and is considered implausible. 
The Akaike weights are denoted as wi (21,22): 

Figure 1 Segmentation procedure. (A) Regional histogram to find the threshold parameter for segmentation of P-layer, based on local 
minima of histogram; (B) screenshot of ITKSnap segmentation window to illustrate the semi-automatic segmentation of the proliferating 
layer P; (C) automated segmentation of engulfed necrotic layer.

A B C
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The Akaike weight of a model is that model’s probability 
of being the K-L “best” model among the set of candidate 
models. Notice how the sum of all the weights will always 
equal 1. These weights can help quantify the uncertainty of 
the model selection process. 

Results

Simulations: parameter (or feature) recovery in presence of 
noise 

In order to assess our inversion algorithm we simulated 30 
realization of Forward model of Eqs. [1-3], as described 
previously in the section for assessment of inversion 
algorithm. We used parameters recommended by 
Wallace-Guo (18). However, we changed the m parameter 
in Eqs. [1-3] to have a small non-zero positive value (to be 
realistic). All this does is make the N-layer settle down at 
a specific equilibrium value, as expected in vivo. We then 
fitted the model by minimizing the weighted sum squared 
error of P, Q, N using MATLAB’s fmincon function as 
described in Methods section.

Figure 2A shows the forward simulations without added 
noise. Figure 2B shows the random realization of P (added 

noise) and its corresponding fitted value. We chose to fit 
3 time-points to be consistent with mice data acquired (as 
explained in Experimental Section in Methods).

The simulations are unit-less to adapt to different 
experimental conditions/cases as in (18). However, time-units 
in hours and volume-units in 50 mm3 would approximately 
scale the axes to adapt to our mice experiments.

Figure 3 shows a bar chart of the true parameters and the 
average mean-parameters with standard-error bar. Note 
that the parameters are denoted in shorthand, such as eqn 
instead eQ, N of for simplicity and clarity of display. Also, not 
all the parameters are annotated for clarity, but from left to 
right the bars correspond to parameters a, bpq, cpq, d, eqn, f, m.

In Table 1 we show the true parameters and followed by the 
statistics of the recovered parameters for 30 noise-realizations: 
the mean, %-error, standard deviation (STDV), Standard 
error (SE). The results show that 5 of the 7 parameters can 
be recovered to have errors less than 4.3%. In particular, the 
useful feature of growth-rate (parameter a) is recovered with 
less than 0.07% error. The remaining two parameters (f and m) 
were related to the necrosis and had higher percentage errors. 
The parameter m, which affects the necrotic volume, was 
very small in magnitude and difficult to estimate from noisy-
data. This had a ripple effect on f, a potentially useful feature 
related tumor-necrotic-effect, increasing its error to 7.8%. On 
the whole, the results indicate that 6 out of 7 features could be 
extracted to within ~7.8% error.

Figure 2 Noise analysis and inversion. (A) Forward simulation of P, Q, N, noiseless case for Model A. The parameters used are a=0.01, 
m=0.001, bpq=0.01, cqp=0.005, d=0.002, eqn=0.002, f=0.01; (B) one noise-realization of P, their initial and final fit is shown respectively. Only 
3 time-points (as marked) are used in the inversion. The simulations are unit-less to adapt to different experimental conditions/cases as in (18). 
Time-units in hours and volume-units in 50 mm3 would approximately the scale the axes to adapt to our mice experiments.
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Mice data fitting for different models

The mouse-data fits for all six mice yielded visually 
reasonable results. Even though each model had different 
fitting errors, interestingly the best and the worst cases were 
always the same two mice respectively for all the models, 
qualitatively and quantitatively. The reason for this is likely 
due to low or high segmentation error. Figure 4 shows an 
example fitting for the mouse, Model A, B and C. The 
fitting of Models B and C were quantitatively different but 
visually nearly indistinguishable for many cases.

Goodness of fit of mice data for different models

Figure 5A,B,C show the regression fits with 95% confidence 
intervals (dashed-lines) for P and N layer with 6×3=18 

data points (6 mice at 3 time-points) for the three models. 
Qualitatively the linear-regression describes the predicted 
and observed P- and N-layers well. For the N-layer, 
the errors were relatively higher than P-layer. Models B 
and C have R2 of 0.99 for P layer and Model A has 0.96. 
For the N-layer the R2 values were 0.95, 0.93 and 0.94 
respectively for surface-area, logistic and Gompertzian. As 
far as the P-layer volume prediction is concerned, which 
is of most interest to us, the Model B and C performances 
were superior to Model A. Finally, in Table 2 we report the 
AIC analysis for model-comparison. All metrics pointed 
to surface-area (Model A) performing worse over Model 
B and C. The RSS (root-mean-squared error over all 18 
data-points and all layers), AICc, AIC, and ∆AIC were 
highest for Model A. The AIC-weight in particular seemed 
to eliminate the surface-area as a good predictor of in  
in vivo data, with the weight near-zero. The performance 
of Model B (Logistic) and C (Gompertzian) was similar 
with the Gompertzian slightly better than Logistic. Since 
the AIC-weights were close, 0.43 and 0.57 for Logistic and 
Gompertzian, indicating both are plausible, both will be 
investigated in the future on clinical datasets.

Discussion 

We have shown a method to extract potentially useful 
biophysical parameters from images of mice-tumors 
(without therapy). There is a wealth of information in 
the clinical patient datasets such as PET/CT, SPECT/
CT or MRI, which can potentially be tapped. The model 
fitting will help characterize the tumors (such as accurate 
growth rate, TNF factor), which in turn may help decide 
the fractionation dose in radiation therapy and dose/cycle 
in chemotherapy. It is possible to generalize the approach 
to be applicable to datasets before and after therapy by 
including a time-dependent therapy effect terms {similar to 

Mean Values

True Values

a           cpq              eqn                 m

1.20E-02

1.00E-02

8.00E-03
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4.00E-03

2.00E-03
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Figure 3 Bar chart showing the true parameters versus the average 
recovered parameters with standard error. Not all the parameters 
are annotated for clarity, but from left to right the bars correspond 
to parameters a, bpq, cpq, d, eqn, f, m.

Table 1 Parameter recovery for simulated case with 30 noise realization

Par. a bpq cpq d eqn f m

True 0.01 0.01 0.005 0.002 0.002 0.01 0.001

Mean [30] 0.00999 0.00957 0.00489 0.001943 0.00195 0.01078 0.001267

% Err. 6.67×10−2 4.3 2.2 2.83 2.5 7.8 26.67

STDV 1.18×10−3 1.64×10−3 1.41×10−3 1.53×10−3 3.69×10−4 1.46×10−3 1.07×10−3

SE 2.16×10−4 3.00×10−4 2.58×10−4 2.80×10−4 6.74×10−5 2.66×10−4 1.95×10−4
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the “d” in Eqs. [1,4], except time-dependent}.
We have performed our investigation on SPECT/CT 

datasets. However, other modalities such as MRI maybe 
considered for fitting these models, as in (5-7).

One of the limitations of this work is being able to 
acquire only 3 time-points due to the high-growth rate 

for the chosen tumor type, dose, imaging time constraints 
and IACUC requirements. In general, more time points 
will sample and capture the variations in the volume (or 
density) better. However, one mitigating factor is the strong 
constraints due to the ode-model with its cross-dependence 
on P and N. The P and N measurements provide two 
measured points to fit the model-constraint for each time-
point. Indeed, our simulation results indicate that 3 time-
points (provided spaced apart adequately) yields good 
accuracy. Note, in large-hospital clinical settings, 3–10 
time-points, (with average of 5 time-points) is common for 
serial PET/CT datasets. 

Since the model considered is a volume model, 
heterogeneity information of the tumor will be averaged 
out. We are currently building a FEM density model to 
account for tumor heterogeneity effects (23). FEM models 
can describe the high deformation of the domain necessary 
for tumor-growth. However, application of FEM models 
require accurate correspondence of voxels across different 
time points and hence co-registered data across different 
time points (via structural information in CT or MRI 
datasets). In contrast, the models considered have the 
simplicity of requiring us to consider only the functional 
modality (SPECT).

Conclusions and future work

We inspected three variants of the Wallace and Guo model 
for their goodness-of-fit on mice SPECT/CT datasets 
with 3 time-points. This is the first time the Wallace-Guo 
compartment model is used in vivo. Our results demonstrate 
that the Gompertzian growth model predicted the overall 
data most accurately for the six-mice datasets with 3 time-
points each, with Logistic model closely following. The 
surface-area model predicted the in vivo data least well of 
the three. All three models included tumor necrosis factor 
and growth; our findings thus give us a perspective on 
how tumor growth ode models can be applied to in vivo 
experiments can provide useful parameters. 

 In the long-term we will investigate efficacy of the 
parameters of the volume model considered here and 
our density FEM model (23) for disease and treatment 
quantification in pre-clinical and clinical studies.
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Figure 4 Example case of mouse data fitting. Fitting results for 
Models A-C.
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Figure 5 Linear regression for 18 data points (6 mice, 3 time-points) for P- and N-layers of (A) Model A, (B) Model B, and (C) Model C. 
95% confidence bounds are given for all linear regressions and regression equations are expressed as: y = a (95% CI) + b (95% CI) × (where 
CI stands for confidence interval).
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Table 2 AIC evaluation for different models

Model S.A. Var. Logistic Var. Gompertz Var.

I.D. A B C

RSS 40,790.33 8,606.94 8,328.28

AICc 158.70 136.26 135.67

AIC 151.06 125.06 124.47

ΔAIC 22.44 0.59 0.00

AIC weight 0.00 0.43 0.57

AIC, Akaike information criterion.

this work.
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