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Introduction

Multimodal optical microscopy is a collective set of imaging 
techniques well suited for high resolution, depth resolved, 
deep tissue imaging. In biological imaging, structural, 
functional, and molecular information regarding the 
specimen of interest can be obtained in a wide variety of 
settings including study of in vitro cell cultures (1), ex vivo 
tissue samples (2,3), or even in vivo (intravital) imaging (4-6).  
While multimodal optical microscopy continues to grow 

in popularity for characterizing complex biological systems 
and organisms, interpretation of the generated dense high-
dimensional data can be difficult and highly subjective. In 
many cases, imaging modalities in a multimodal system 
are considered to provide complementary information, 
allowing multiple properties of the sample to be probed 
simultaneously. However, a quantitative understanding of 
the relationship carried between various modalities remains 
to be understood generally or utilized to better understand 
the subtle properties of biological specimens.
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Multimodal optical microscopy encompasses many 
imaging modalities often combined into an integrated system 
capable of simultaneously acquiring data from multiple 
contrast sources that are inherently co-registered both 
spatially and temporally. Imaging techniques employed often 
vary, but can include techniques such as optical coherence 
microscopy (OCM) to probe the structural form of the 
specimen obtained from scattered light measurements (7),  
two-photon excitation fluorescence (TPEF) microscopy 
to identify endogenous or exogenous fluorophores in the 
specimen (8), fluorescence lifetime imaging microscopy 
(FLIM) to provide metabolic and functional contrast 
when imaging certain endogenous molecules such as 
nicotinamide adenine dinucleotide (NADH) (9), and 
second harmonic generation (SHG) microscopy to visualize 
connective structures of the specimen such as collagen and 
elastin fibers (10). In addition to these, many other optical 
imaging modalities have been established including Raman 
scattering-based techniques (11,12) and higher order 
nonlinear fluorescence (13,14) and harmonic generation 
techniques (15). Multimodal imaging systems incorporating 
many of these techniques have been developed for a wide 
variety of applications including investigation of wound 
healing (6), adverse effects of topical pharmaceuticals (5),  
identification of cancer and tumor markers (16), and 
the identification of cell death modes (3). However, the 
analysis of data generated from these systems has been 
primarily qualitative and analysis is often performed on 
each individual modality, not directly taking into account 
the complex relationships and correlations between imaging 
modalities and the valuable information that can be 
provided.

Quantitative imaging techniques are typically utilized 
as methods that take raw image data and, through prior 
knowledge of the underlying physical processes, extract 
quantitative features that represent important physical 
information (17). Biological examples of these techniques 
can be found in characterizing chromatin distributions 
in cell nuclei (18) or in measuring the shapes and sizes 
of cell nuclei for cancer diagnostics (19). Today, as these 
techniques have developed and become more broadly 
used, quantitative microscopy techniques are utilized for 
advanced, high throughput screening for studies such as 
location proteomics (20).

As an example, the field of digital histopathology has 
been combined with highly accurate automated classification 
techniques to allow diagnostic and potentially prognostic 
information to be obtained with high accuracy in order 

to assist the practicing pathologist (21). One particularly 
exciting example of work in this area was performed for 
breast cancer diagnostics, in which structural information 
obtained from quantitative histopathologic image 
biomarkers were combined with traditional genomic data 
analysis to train a highly accurate predictor of breast cancer 
survival (22). However, these techniques often require the 
use of stains or dyes and must be performed on thin tissue 
sections, restricting translation to in vivo imaging. Advances 
in spectroscopic infrared imaging have also paved the 
way for obtaining diagnostic and prognostic information 
directly from spectroscopic measurements of unstained 
histology samples (23). Spectroscopic imaging thus is not 
biased by staining levels that tend to vary depending on the 
laboratory performing the staining (24). However, digital 
histopathology and absorption-based spectroscopic methods 
are typically limited to very thin tissue sections on the 
order of microns and tend to require very long acquisition 
times, limiting translation to noninvasive in vivo imaging 
scenarios. Identifying robust image biomarkers using deep 
tissue optical microscopy methods may prove to be an 
advantageous method for clinically relevant identification 
and characterization of biological state of the natural cell 
and tissue microenvironment.

In this study, a set of methods for quantifying the 
intermodality contrast in multimodal optical microscopy 
datasets in a variety of settings is presented. This framework 
is then applied to the problems of automated identification 
of cell death modes and anatomical or disease state 
identification in unstained tissue slices. In both cases, results 
show highly accurate identification of biological processes 
obtained from analysis of these dense datasets acquired 
from multiple contrast sources that are co-registered both 
spatially and temporally.

Methods

Multimodal optical microscope

A custom-built multimodal optical microscope capable 
of OCM, TPEF, SHG, and FLIM imaging described 
previously (25) was used in this study. This combination 
of modalities provides both structural and functional 
information regarding the tissue microenvironment with 
subcellular level resolution. Excitation light was provided 
by a titanium:sapphire laser (MaiTai HP, Spectra Physics) 
centered at a wavelength of 730 nm, which was focused onto 
the sample of interest using a 0.95 numerical aperture (NA) 
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water-immersion objective lens (XLUMP20X, Olympus). 
The optical power at the focus was less than 7 mW. The 
focused beam was raster scanned across the sample using 
a pair of computer-controlled galvanometer mirrors 
(Micromax 671, Cambridge Technology) to construct 
an image. Detection of fluorescence and SHG light was 
performed using a 16 channel photomultiplier tube (PMT) 
spectrometer (PML-16-C, Becker-Hickl) centered at  
450 nm and operating in photon counting mode. 
This spectral detection scheme allows isolation of the 
fluorescence and SHG light as well as observation of 
spectral changes in the fluorescence light due to fluorophore 
or environmental perturbations. The OCM signal was 
detected using a custom-built spectrometer with a CCD 
line-scan camera (Dalsa P2-22-02K40). In order to obtain 
fluorescence lifetime curves, time-correlated single photon 
counting (TCSPC) was performed using a commercial 
TCSPC data acquisition board (SPC-150, Becker-Hickl) 
based on the data collected from the 16-channel PMT 
spectrometer. 

Classification of cell death modes

Data obtained from a previous study of cell death modes in 
living engineered skin samples (3) were analyzed to develop 
an automated classification system based on the joint image 
contrast from multiple modalities. Experimental details of 
the data acquisition were previously published (3). Briefly, 
three tissue samples were longitudinally imaged with the 
multimodal microscope described above over a period 
of up to 18 hours. Three conditions were compared by 
introducing a specific chemical compound into the culture 
medium of the tissue model. To induce apoptosis in cells, a 
mixture of 20 µM camptothecin and 50 µM etoposide was 
used (both from BioVision, Mountain View, CA, USA). To 
induce necrosis, 5% peroxide bleach was used. Finally, the 
induced cell death modes were compared to a control tissue 
sample which was left untreated. For experiments described 
here, data were compared at approximately 3 hours post-
treatment.

Data from the PMT spectrometer was binned over the 
spectrum of NADH in order to increase the signal-to-
noise ratio (SNR) allowing a more accurate measure of 
the fluorescence lifetime at each pixel. The fluorescence 
lifetime was determined at each pixel through the use of 
SPCImage (Becker & Hickl). The TPEF intensity image 
was determined by performing a summation over the entire 
decay curve of each pixel in the image to find the total 

number of fluorescent photons received from each spatial 
location. Structural data provided by OCM were processed 
online using standard methods to provide scattering maps 
of samples (26).

Figure 1 shows the basic processing pipeline for the 
automatic cell death classification system. To begin, 
images obtained from the procedure described above 
were segmented using a custom-built CellProfiler (27) 
pipeline based on a built-in intensity based segmentation 
algorithm performed on the TPEF intensity images. This 
step was performed to extract the multimodal features only 
from cellular regions where information about cell fate 
was relevant. Next, the multimodal data were organized 
in such a way that each pixel was represented by a three-
dimensional (3D) feature vector consisting of the OCM 
scattering intensity, the TPEF fluorescence intensity, 
and the mean fluorescence lifetime. Further analysis and 
classification was carried out on a pixel-by-pixel basis 
in MATLAB (MathWorks). From here, the data were 
partitioned into ten equal sized groups that were used for 
cross-validation to assess the accuracy of the classification 
procedure. Classification was performed through the use of 
support vector machines (SVM), which find the hyperplane 
that most optimally separated the data in this 3D space (28). 
Testing of the classification system was performed using 10-
fold cross-validation. 

Identification of tissue components and disease states

Large field-of-view multimodal datasets were acquired by 
collecting 100 individual images in a 10×10 mosaic pattern 
using the previously described multimodal microscope. 
Samples consisted of 10 µm thick ex vivo fixed tissue slices 
prepared on glass microscope slides. For these studies, 
OCM images were not acquired due to the strong reflection 
from the glass slide. Following imaging with the multimodal 
microscope, tissue sections were stained with hematoxylin 
and eosin (H & E) and imaged with a standard brightfield 
microscope (Zeiss Axiovert 200). Imaging was performed 
to capture the identical field of view as was imaged with the 
multimodal microscope on the same tissue slice, allowing a 
direct comparison with the gold standard typically used for 
anatomical and diagnostic information in clinical practice.

Unless otherwise noted, all further analysis of tissue 
slice images was performed in MATLAB. For each 
image, the four-dimensional (4D) data acquired from the 
PMT spectrometer was processed by first constructing 
a fluorescence spectrum at each pixel corresponding to 
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Figure 1 Classification procedure for identifying and distinguishing apoptotic and necrotic cells based on joint contrast from an integrated 
multimodal optical microscope. TPEF, two-photon excited fluorescence; FLIM, fluorescence lifetime imaging microscopy; OCM, optical 
coherence microscopy. 
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each wavelength channel of the PMT spectrometer. Next, 
TPEF and SHG intensity images were constructed by 
performing a summation over the temporal dimension as 
well as the wavelength channels corresponding to each of 
these spectrally separated processes (channels 1–4 for SHG, 
channels 5–16 for TPEF). Finally, fluorescence lifetime 
was calculated on eight of the individual TPEF channel by 
fitting the temporal decay curves to a bi-exponential model 
as is commonly performed in processing fluorescence 
lifetime data from NADH (29). Each pixel in the 3D dataset 
can be considered to be a feature vector consisting of 24 
features. 

Following construction of all individual processed 
images, image stitching of the multimodal data was 
performed by using a multiband blending technique (30) 
along with overlapping image regions to remove mosaicking 
artifacts due to slight brightness changes across the field 
of view resulting in a banding structure that appears in the 
mosaic. Figure 2 shows images of these processed mosaics 
and the corresponding region in the H & E image of a rat 
mammary tumor sample.

In order to fully exploit the spatial correlations between 
the H & E and multimodal mosaics, these datasets were 
then spatially co-registered using a control point-based 
registration method as shown in Figure 3. In MATLAB, 
pairs of corresponding control points were manually 

selected in both images. These points correspond to 
physical landmarks present in both datasets that were easily 
identified. After the successful mapping of 15–30 points 
in each mosaic, an affine transformation matrix was found 
that best maps the spatial transformation of these points in 
a least-squares sense. The affine transformation accounts 
for any scaling, translation, and rotation that may occur 
during the staining process, which may slightly alter the 
tissue, as well as the effects of sample orientation and image 
magnification. Finally, this transformation was applied to 
the H & E image, spatially co-registering this known gold 
standard to the acquired wide field multimodal mosaicked 
images, allowing a direct comparison of these useful 
datasets. In the spatially transformed H & E image, regions 
of interest corresponding to biological features of interest 
such as disease regions or anatomical regions were manually 
labeled. This labeling was performed in order to provide 
a small amount of labeled training data, representing a 
ground truth. From these labeled points, the goal was to 
accurately label every pixel in the image and to recover the 
statistical properties of each anatomical or pathological 
group of interest. The multimodal signals consisting of 
the emission spectrum (including both SHG and TPEF 
signals) as well as the spectrally resolved mean lifetime of 
the fluorescence for a total of 24 features at each pixel were 
extracted from these regions and used as training data for a 
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Figure 2 Multimodal and histological data of a rat mammary tumor section. (A) TPEF intensity image; (B) SHG data of collagen networks 
and connective tissues; (C) FLIM of NADH metabolic activity; (D) H & E-stained histological section of the corresponding region of the 
rat mammary tumor. Scale bar in (A) is 200 µm and applies to all images (A-D). Color scale represents fluorescence lifetime in (C). TPEF, 
two-photon excitation fluorescence; FLIM, fluorescence lifetime imaging microscopy; NADH, nicotinamide adenine dinucleotide; SHG, 
second harmonic generation.
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naïve Bayes classifier.
Following co-registration of these datasets, pixel-

wise classification was performed on each image using an 
iterative semi-supervised classification procedure based 
on a naïve Bayes model. This semi-supervised approach 
has proven useful in many applications including text 
classification (31) and rRNA sequencing (32). In the naïve 
Bayes approach, a generative model is used to explain the 
observed data. Specifically, it is assumed that each spatial 
pixel in this high dimensional multimodal image, which will 
be referred to as a multimodal pixel vector, given its class 
label, is generated according to a probability distribution 
described through a parameter vector, θ. In the naïve Bayes 
model, which is used to greatly simplify the estimation of 
this generating probability function, it is assumed that all 
features are mutually independent given the class label. 
Thus the posterior can be simplified as

( ) ( ) ( ) ( )
( )

( ) ( )
 
 
 

∏
x

i i i
i j i

j=1

p y p x | y p y
p y | x = = p x | y

p x p x [1]

where yi is the class label of pixel i, x is the feature vector 
and j is an index that tracks each feature or modality. This 
greatly decreases the number of elements in the parameter 
vector. In this work, the data were modeled through a 
multivariate Gaussian distribution in order to simplify 
the analysis. Due to the naïve Bayes assumption, all non-
diagonal terms of the covariance matrix of the multivariate 
Gaussian distribution function are identically zero. Thus, 
the model is determined completely through estimation of 
the mean and variance vectors of each class.

It has been shown that even though the naïve Bayes 
independence assumption is generally unfounded, leading to 
errors in probability estimates, generally good classification 
results can still be obtained in most cases (33). The semi-
supervised classification procedure was performed using 
the expectation-maximization (EM) algorithm similar to 
the one described in (34). This procedure consisted of 
two major steps. In the first step, known as the M step, 
a maximum likelihood estimate of the parameters of a 
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multivariate Gaussian model best explaining the training 
data was performed. The estimates for the mean and 
variance of each class are given respectively by

1

1
ˆ ∑

M

i
i=

μ = x
M [2]
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where M is the total number of pixels in the group and the xi 

are the multimodal pixel vectors. To begin, these estimates 
were obtained only for the user-selected labeled training 
data. In the second step, known as the E step, this estimated 
Gaussian model was used to calculate the posterior 
probabilities for class membership for both the labeled 

and unlabeled multimodal pixel vectors in the image. The 
posterior is given explicitly by

( ) ( ) ( )
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The first term in the numerator is the class prior 
probabilities and can be estimated using maximum 
likelihood as

( ) { }
θ̂ j

j

N y = y
p y | =

D
[5]

where the numerator denotes the number of elements in 
class j and the denominator is given by the total number of 
elements. The second term in the numerator of Eq. [4] is 
given by

Figure 3 Control point-based affine transformation procedure for co-registration of histological data and multimodal data. (A) Labeled 
multimodal images and (B) histological images are manually labeled with points that correspond to matching landmarks in each image. 
These points are used to determine the appropriate transformation that is applied to the histological dataset; (C) overlay of the two co-
registered datasets. Orange color demonstrates overlap of the structural features from each dataset, showing accurate registration of the 
dataset; (D) a magnified view of (C) corresponding to the area shown in the blue box. Scale bar is 200 µm.
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where m is the number of modalities (features) analyzed and 
∑ is the covariance matrix with diagonal elements given by 
Eq. [3]. From these posteriors, each multimodal pixel vector 
was assigned the label corresponding to the class which 
maximizes the posterior. That is, the assigned label is given 
by

( )= arg max ˆ,ˆ θi j j iy p y | x [7]

After this initial step, the above procedure was iterated 
with the M step being performed on all pixels instead of just 
the manually labeled training multimodal pixel vectors.

Results

Cell death identification

In previous studies, induction of cell death has been shown 
to be associated with changes in the signals acquired 
from many of the imaging modalities employed here. 
Although these changes have been shown to be significant, 
quantification of the accuracy in using this data jointly to 
automatically classify cell death modes was not performed. 
While healthy cells are associated with minimal change 
from baseline values measured before the addition of saline, 
significant changes to the image contrast were found to 
occur in both apoptosis and necrosis. In apoptotic cells, 
as was observed in cell culture studies (34,35), the mean 
fluorescence lifetime of NADH was found to increase 
dramatically while there were only minor, non-significant 
changes in OCM and NADH TPEF intensity contrast. In 
necrosis, only a decrease in the OCM signal, demonstrating 
reduced scattering from necrotic cells, was observed as a 
significant change. Many of these trends have also been 

demonstrated in mouse skin keratinocytes in vivo (36).
In order to assess the ability to distinguish these modes 

of cell death quantitatively using these co-registered 
multimodal data, classification of intracellular multimodal 
signals was performed as described above. Two-class 
(apoptosis vs. control; necrosis vs. control) identification 
was performed to determine the sensitivity, specificity, and 
accuracy of detection of cells treated to induce cell death 
when compared to normal or healthy cells by training 
classifiers using baseline images acquired before treatment, 
along with images acquired three hours after cell death 
induction.

Table 1 shows results for identification of apoptotic cells. 
Each column represents the results of training a classifier 
on a given individual modality. The final column represents 
training a classifier on the combined multimodal data. 
From observations of changes in previously reported data, 
it is expected that the mean fluorescence lifetime alone 
should be able to distinguish apoptosis quite well due to the 
large increase in mean lifetime associated with apoptosis 
induction. It can be seen from the classifiers trained on the 
remaining data that both OCM and TPEF intensity add 
little information in identifying apoptosis as both modalities 
give very low accuracy results. Ultimately, this leads to 
minimal improvement when using a combination of the 
modalities to identify apoptosis as compared to using FLIM 
measurements alone.

Table 2 gives results for identification of necrosis. Based 
on the same data, it is expected that mean fluorescence 
lifetime will not be nearly as sensitive to the necrotic 
process as compared to apoptotic cell death and that 
scattering measured with OCM should have more predictive 
value in identifying necrosis when compared to apoptosis. 
Classification results confirm that mean lifetime alone is 
much less accurate in identifying necrosis. In addition, 
accuracy of classification based on the OCM modality alone 

Table 1 Classification results for apoptosis vs. control

Measure FLIM OCM TPEF Combined

Accuracy (%) 94.1 61.4 58.6 94.5

Sensitivity (%) 94.8 58.9 55.9 95.7

Specificity (%) 93.3 65.8 65.2 93.3

FLIM, fluorescence lifetime imaging microscopy; TPEF,  
two-photon excitation fluorescence; OCM, optical coherence 
microscopy.

Table 2 Classification results for necrosis vs. control

Measure FLIM OCM TPEF Combined

Accuracy (%) 71.4 68.7 55.2 75.2

Sensitivity (%) 70.5 65.2 53.4 73.4

Specificity (%) 72.4 74.2 60.7 77.3

FLIM, fluorescence lifetime imaging microscopy; TPEF, 
two-photon excitation fluorescence; OCM, optical coherence 
microscopy.
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is slightly increased compared to the apoptosis case. Most 
interesting is the fact that the combination of all modalities 
quantitatively provides complementary information that 
is very useful when considered together. Due to this, 
significant improvement is seen when training classifiers 
based on all modalities to identify necrotic and apoptotic 
cells. 

It is very likely that at any time a biological environment 
consists of a collection of cells, some of which may be 
functioning normally, while others are undergoing either 
apoptosis or necrosis. Thus, it is more useful to identify 
and distinguish between these three cases so that any 
general microenvironment can be characterized based on 
the number and process of these cell death events. Results 

from three-class identification are shown in Figure 4 and 
Table 3. Here it is seen that generally poor results are 
obtained when using only individual modalities to classify 
data. In contrast to this, the use of all modalities to train a 
classifier to identify distinct multimodal signatures of these 
cell death processes provides high accuracy improving the 
accuracy to 83.9%, which is much higher than using any 
of the individual modalities. Thus, the importance of a 
multimodal approach to the solution of the general problem 
of identifying cell death processes is clearly demonstrated. 
Without the complementary information provided by these 
three imaging modalities, highly accurate classification is 
not possible.

Tumor boundary classification

Another important biomedical imaging application that 
can be approached using this quantitative multimodal 
classification system can be found in identifying tumor 
boundaries from tissue slices. Characterization of various 
cancers has been the focus of many studies in optical imaging 
and in particular, the studies of cancer progression (37)  
and treatment response (38) have shown promising results 

Table 3 Classification results for apoptosis vs. necrosis vs. control

Measure FLIM OCM TPEF Combined

Accuracy (%) 72.3 47.6 54.6 83.9

FLIM, fluorescence lifetime imaging microscopy; TPEF, two- 
photon excitation fluorescence; OCM, optical coherence  
microscopy.

Figure 4 Classification maps of cell death processes in a living engineered skin tissue culture. Each row represents a specific condition of 
cell death (apoptosis or necrosis) and control conditions. Each column represents a classifier trained on the labeled modality for the three 
classes. Each pixel in the image is labeled with green corresponding to a correctly classified pixel or red corresponding to a misclassified 
pixel. The last column corresponds to training the classifier on all the combined modalities, demonstrating higher accuracy obtained from 
the complementary modalities. Scale bar is 50 µm. FLIM, fluorescence lifetime imaging microscopy; OCM, optical coherence microscopy; 
TPEF, two-photon excitation fluorescence.
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in which many morphological and label-free imaging 
biomarkers can be extracted and used to gain both 
diagnostic and prognostic information. Using an integrated 
quantitative classification approach to identify and 
characterize malignant tumors based on potentially subtle 
alterations may provide further insight into therapeutics 
and treatment outcomes.

In this analysis, classification of tumor, muscle, and 
collagen was performed on a rat mammary tumor as 
described in the Methods above. Figure 5 shows the results 
of this analysis. Figure 5A shows the co-registered H & E 
data allowing clear identification of the tumor site, which 
can be seen as the dark purple area in the H & E image 
due to the increased presence of tumor cells. Muscle can 
be clearly seen as the bright pink striated regions. Finally, 
the collagen can be identified in the regions connecting 
the muscle and tumor. The final results of the analysis, 
classifying each pixel in the multimodal image set is shown 
in Figure 5B where the tumor class is labeled red, the 
collagen class is labeled blue, and the muscle class is labeled 

green. Figure 5C shows a visualization of the extracted 
multimodal imaging signatures of these groups presented 
as a radial plot showing the SHG, TPEF, and FLIM 
spectral features. The extracted statistics of this data can 
be presented by a simplified 3D visualization in which each 
class is represented by the mean (centroid of ellipsoid) as 
well as the variance (principal axis lengths of ellipsoid) of 
its major TPEF, SHG, and FLIM signals (Figure 5D). Most 
notably, the tumor can be characterized by the absence 
of SHG signal and the presence of weak fluorescence. In 
contrast to this, the surrounding connective tissue exhibits 
increased levels of both SHG from surrounding collagen 
as well as an increase in the fluorescence signals. Classified 
muscle tissue is most clearly distinguished by the increased 
fluorescence intensity compared to the other two classes. 
Some obvious classification errors can be observed in several 
regions, and these may be due to tissue processing artifacts 
such as folds and wrinkles in the tissue section as well as the 
presence of other tissue components not considered, such as 
red blood cells.

Figure 5 Classification results of rat mammary tissue. (A) Co-registered histology and zoomed region of the tumor boundary;  
(B) classification map of corresponding regions. Red corresponds to classified tumor, green corresponds to classified muscle, and 
blue corresponds to classified collagen along the tumor boundary; (C) radial plot showing the mean multimodal signals of each class 
demonstrating the associated quantitative multimodal signatures; (D) simplified ellipse plot of the three classes [color legend shown in (C)] 
showing the characteristic statistical properties of the three classes according to the TPEF, SHG, and FLIM features. Scale bar is 200 µm. 
TPEF, two-photon excitation fluorescence; FLIM, fluorescence lifetime imaging microscopy; SHG, second harmonic generation.
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Liver tissue classification

In order to further demonstrate the use of this classification 
approach in identifying cellular and subcellular features, 
anatomic labeling of rat liver tissue was performed. The 
liver, responsible for filtering blood and removing toxins 
from the body, consists mainly of hepatic cells around which 
enlarged capillaries known as sinusoids provide sufficient 
blood flow. Several studies have been performed using 
multiphoton microscopy in the liver for examining changes 
under conditions of liver fibrosis (39) and ischemia (40). In 
these studies, information such as density of hepatocytes 
and nuclei size was seen to be two major predictors of 
pathological alteration. With the quantitative classification 
approach employed here, hepatocytes as well as red blood 
cells found in the liver can be automatically classified and 
further characterized, showing the potential for this tool in 
studying early stages of pathological alterations in the liver.

Classification of hepatocyte cytoplasm, hepatocyte nuclei, 
and red blood cells is performed using the same approach. 

Figure 6A shows the co-registered histology from the area 
under investigation while Figure 6B provides the spatial 
classification map for identifying the anatomical features of 
interest in the tissue. Red pixels indicate classified red blood 
cells, green pixels hepatocyte cell cytoplasm, and blue pixels 
hepatocyte nuclei. These multimodal imaging signatures 
can also be presented using radial and ellipsoid plots  
(Figure 6C,D). 

From these results, accurate identification of these 
three classes is obtained and clear differences between 
hepatocyte cell cytoplasm, hepatocyte nuclei, and red blood 
cells can be observed. The hepatocyte cell cytoplasm is 
well differentiated by the low fluorescence intensity levels 
observed as well as a slightly elevated lifetime, compared 
to the other two classes. Nuclei and red blood cells are 
best distinguished by their larger TPEF signals with nuclei 
tending to be the brightest signals in these images. Some 
classification errors may be observed based on the similarity 
between the fluorescence lifetime of red blood cells and 
hepatocyte nuclei classes. Along with this, the small size 

Figure 6 Classification results of rat liver tissue demonstrating sub-cellular classification resolution. (A) Co-registered histology and 
zoomed region of interest; (B) classification map of corresponding regions. Red corresponds to classified red blood cells, blue corresponds to 
classified hepatocyte nuclei, and green corresponds to classified hepatocyte cytoplasm; (C) radial plot showing the mean multimodal signals 
of each class demonstrating the associated quantitative multimodal signatures; (D) simplified ellipse plot of the three classes [color legend 
in (C)] showing the characteristic statistical properties of the three classes according to the TPEF, SHG, and FLIM features. Scale bar is  
100 µm. TPEF, two-photon excitation fluorescence; FLIM, fluorescence lifetime imaging microscopy; SHG, second harmonic generation.
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of these features and the role of spatial averaging tend to 
make classification difficult on spatially localized objects. 
Specifically, red blood cells and hepatocyte nuclei tend to 
be observed in smaller isolated areas in the image. Spatial 
averaging of the class dependent probabilities can cause the 
surrounding pixels to be falsely classified according to their 
particular neighbors in this case. In this dataset, this leads to 
a fairly noticeable overestimation of red blood cells in the 
image.

Ovary tissue classification

In the final experiment, mouse ovarian tissue was examined. 
The ovaries are a critical component of the female 
reproductive system and disorders of the ovary have recently 
been studied using MPM in order to extract powerful 
biomarkers for ovarian tumors (16,41). In these studies, 
the importance of quantifying the amount and orientation 
of connective tissues such as collagen and elastin, as well 
as the metabolism of the cellular microenvironment, was 

demonstrated in the identification of ovarian tumors. 
These features can be extracted automatically using this 
quantitative classification approach, allowing the images to 
be further analyzed to detect and report any pathological 
alterations that may be present.

Figure 7A shows the co-registered histology of the tissue 
slice imaged with the multimodal microscope while Figure 7B  
provides the spatial classification map for identifying 
collagen, epithelial cells, and the surrounding stroma. In 
this image, red pixels indicate classified stroma, green pixels 
epithelial regions, and blue pixels regions of connective 
tissue. Figure 7C,D show these multimodal imaging 
signatures presented as previously through both radial and 
ellipsoid plots, respectively.

Although accurate identification of connective tissue is 
obtained, classification of stromal tissue and epithelial cells 
shows only moderately successful results. The extracted 
multimodal imaging signatures shown in Figure 7C,D 
show strong differences between connective tissue and the 
other two classes examined here. These can be seen in the 

Figure 7 Classification results of mouse ovary tissue. (A) Co-registered histology and zoomed region of interest; (B) classification map 
of corresponding regions. Blue corresponds to classified connective tissue, red corresponds to classified stroma, and green corresponds 
to classified epithelial tissue; (C) radial plot showing the mean multimodal signals of each class demonstrating the associated quantitative 
multimodal signatures; (D) simplified ellipse plot of the three classes [color legend in (C)] showing the characteristic statistical properties of 
the three classes according to the TPEF, SHG, and FLIM features. Scale bar is 100 µm. TPEF, two-photon excitation fluorescence; FLIM, 
fluorescence lifetime imaging microscopy; SHG, second harmonic generation.
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presence of large amounts of SHG signal and increased 
levels of fluorescence emission in the connective tissue 
class. The classification errors present in some areas may 
be due mainly to the similarity of these two classes. While 
epithelial tissue regions are associated with decreased 
TPEF signals, this alone is not robust enough to distinguish 
between the two groups in all cases. With more modalities, 
morphological features, or enhanced statistical modeling of 
these data, better identification of these tissue components 
may be attained.

Discussion

This work presents a quantitative, probabilistic framework 
for analyzing the high dimensional datasets that were 
acquired from an integrated multimodal optical microscope. 
This described analysis provides a direct link between the 
biological information of interest and the contrast obtained 
from the various modalities considered. By incorporating 
several modalities including OCM, TPEF, SHG, and 
FLIM, biological information can be automatically 
extracted with some prior information. This information 
can come from manual labeling of a few pixels, as was seen 
for the example of classifying images from ex vivo tissue 
slices, or from some ground truth which is known a priori, 
as with the cell death datasets. In both cases, powerful 
classification and extraction of multimodal signatures based 
on the contributions of each modality may be obtained, 
allowing for a new representation of information present 
in multimodal images. In considering the data in this way, 
accurate classification was achieved for both functional 
states, such as in determining cell fate as well as structural 
and anatomical identification as in the case of anatomic 
labeling of tissue slices. By considering the joint contrast 
across many complementary imaging modalities, accurate 
determination of cell death and further delineation of the 
differences between apoptosis and necrosis was performed. 
Quantitative analysis of multimodal microscopy data from 
fixed ex vivo tissue slices also showed strong classification 
of pathological states as well as structural or anatomical 
features on the cellular and subcellular level. 

With these techniques, many improvements can still 
be made. Most notably, other spatial and morphological 
features can be extracted and utilized to incorporate spatial 
context into the classification procedures. Deeper statistical 
modeling of the data as well as acquisition of larger and 
more thorough datasets can be performed in order to 
develop more robust classification systems. Finally, in order 

to truly validate the classifications presented here, a direct 
comparison of the classified pixels to a generated ground 
truth map must be made. This can be constructed by 
consulting an expert pathologist to identify the appropriate 
regions in each image, allowing a direct comparison 
to the ground truth in order to assess the approximate 
accuracy of classification. Also, the incorporation of new 
imaging modalities that can provide further supplementary 
information could greatly increase the discriminating power 
of such classifiers. The incorporation of many of these 
improvements could lead to the extraction of diagnostic 
and prognostic information from these dense multimodal 
microscopy datasets.
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