
© AME Publishing Company. All rights reserved. Quant Imaging Med Surg 2012;2(3):213-218www.amepc.org/qims

Magnetic Resonance Imaging is capable of providing 
clinically-valuable images for hepatic diseases such as the 
fatty liver and has become a promising noninvasive method 
in evaluating human liver under normal and diseased 
conditions (1-9). Fatty liver is one of the most common 
abnormalities. Recent surveys have shown that it affects up 
to 15% of the general population and it is higher among 
those with obesity and high alcohol consumption (10-12). 
Fatty liver is commonly associated with alcohol overuse, 
obesity, hyperlipidemia and hepatitis, and will cause 
steatosis within hepatocytes (13-17), which may progress 
to steatohepatitis and then cirrhosis (18-20). Liver biopsy 
is considered the diagnostic reference standard for the 
assessment of fatty liver, however it is invasive and prone to 
complications and is no longer considered as mandatory as 
first line screening tools for fatty liver (21). MRI provides 
different contrast between the different tissues of human 
abdomen, and has potential to quantitatively assess the 
hepatic liver in patients with fatty liver and predict the 
degree of steatosis of liver (22-34). Some quantitative 
imaging methods have been proposed for evaluating the 
hepatic fat, such as, Dixon method (22-24,34-38), the 
in-phase, opposed phase gradient echo MR imaging 
method (25,32), and proton MR spectroscopy method. 
However the insufficient image resolution and long 
acquisition time limit its quantitative capability. In addition, 
the motion artifacts caused by breathing and heartbeat 
become a major problem in further improvement of hepatic 
image quality in practice. It is highly demanded to increase 
the imaging speed and also the image resolution, which is 

challenging in present liver MRI routines. Recent years, 
high and ultrahigh field MRI (39-50,51-64), such as 7T, has 
shown its inherent ability to improve signal to noise ratio in 
human head imaging (42-45,48,49), prostate imaging (50,65), 
spine imaging (46,54) and abdominal imaging (51,59,66). It 
is expected to achieve better signal to noise ratio (SNR) and 
thus high resolution in liver imaging. However, transferring 
liver imaging protocols to ultrahigh fields faces many 
practical difficulties and technical challenges in both RF coil 
design and sequence design for human liver imaging due 
to the pronounced radiation losses, chemical shift, motion 
artifacts and B1 variation (31) at high fields. There is an 
urgent demand for technical development for liver imaging 
in both MR hardware and fast acquisition strategies using 
ultrahigh field MR.

Recent years, the microstrip transmission line (MTL) 
RF coils (40,55,67-69) have shown advantages in high 
and ultrahigh field MR applications with high frequency 
operation capability, high quality factors, reduced radiation 
losses and improved MR sensitivity. Its unmatched 
decoupling feature is essential for high field RF transmit/
receive array designs. An example is the flexible transceiver 
array developed for ultrahigh field 7 T MR applications by 
using the first and second order harmonics of the microstrip 
resonator (55,70). The mixed harmonic MTL resonator 
technique greatly improves the decoupling performance, 
reduces noise correlations between resonant elements, and 
enhances parallel imaging performance. This technique 
does not require physical connection or decoupling network 
between array elements, which is commonly used in 
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conventional coil array designs for implementing decoupling. 
Consequently the geometry and size of the microstrip 
flexible array can be conveniently adjusted to best fit patients, 
achieving the best filling factor and therefore the increased 
signal to noise ratio for human liver imaging. 

In fast  imaging methods,  paral le l  imaging has 
demonstrated the unique capability in accelerating MR 
imaging by using the different sensitivity profiles of RF 
coil array elements to replace the phase encoding. The 
undersampled raw data can be reconstructed using a 
special reconstruction method to achieve a correct image 
with significantly reduced aliasing (71-76). Our previously 
proposed flexible microstrip array can be readily utilized 
for parallel imaging to accelerate the hepatic imaging 
and thus help reduce the motion artifacts. On the other 
hand, parallel transmission is able to shorten the RF pulse 
width for spatial selective excitation by using transceiver 
coil arrays and the sensitivity information (77-81). 
Although the specific absorption ratio (SAR) grows with 
the acceleration rate, the SAR can be optimized using 
different strategies such as variable sampling rate or 
optimized k-space trajectories (78,82,83). In human liver 
imaging, the power deposition is always an important safety 
issue while the imaging speed is critical to imaging quality. 
Parallel transmission strategy thus provides effective ways 
to help making a tradeoff between the power deposition and 
imaging speed for hepatic imaging. 

Recently the compressed sensing (84) MRI which 
can greatly reduce the raw data size required for image 
reconstruction and shorten the imaging time by using 
significantly undersampled k-space demonstrates great 
potential to perform fast imaging with high image quality 
and enhanced image resolution (85-99). This is very 
helpful for liver imaging because motion artifacts caused 
by breathing and heartbeat often deteriorate liver image 
quality. Unlike the parallel imaging, compressed sensing 
technique basically does not require any new hardware for 
implementation. However, at the high acceleration rate, the 
contrast to noise ratio (CNR) normally decreases quickly 
due to the use of significantly undersampled k-space data. 
This is not desired in liver imaging because the tissue 
contrast plays an important role in differentiating normal 
and diseased liver tissues. The interpolated compressed 
sensing (iCS) MR image reconstruction method proposed 
recently would be possible to improve CNR and even 
SNR at high acceleration rates for multi-slice 2D imaging 
applications (98). For a significantly undersampled slice 
some missed raw data can be estimated by using the raw 

data from the neighboring slice convolved by a weighting 
function. This strategy helps improve the CNR and 
also SNR of the images of multi-slice 2D MRI. It would 
be advantageous to apply the iCS method to hepatic 
imaging and develop specialized MR pulse sequence 
and reconstruction method to dramatically shorten the 
acquisition time while maintain the CNR. This would 
provide an efficient imaging tool for quantitatively assessing 
the liver fat and monitoring therapy outcome of the fatty 
liver non-invasively.

In summary, the advanced MRI techniques such as 
ultrahigh field, novel RF transceiver arrays, parallel imaging 
techniques, parallel transmission and compressed sensing 
would be advantageous in augmenting its quantitative 
capability and gaining better diagnosis and characterization 
of fatty liver diseases. To realize this and provide clinically-
valuable images, dedicated RF transceivers, specific imaging 
sequence and reconstruction methods have to be explored 
and investigated to satisfy the clinical requirements.
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